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Abstract

We provide the first generalized game characterization of van Glabbeek’s linear-time–branching-time spec-
trum with silent steps. In our quantitative formulation, one multi-dimensional energy game can be used to
characterize and decide a wide array of weak behavioral equivalences between stability-respecting branching
bisimilarity and weak trace equivalence in one go. Deciding all notions this way takes time exponential in
the number of states. To establish correctness, we relate attacker-winning energy budgets and distinguishing
sublanguages of Hennessy–Milner logic that we characterize by eight dimensions of formula expressiveness.
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1. Introduction: Mechanizing the Spectrum

Picking the right notion of behavioral equivalence for a particular use case can be hard. For example,
Bell [2] has wondered how to precisely justify the equivalence of the states Pc and Pp in the following
transition system, which originates from a program and its rewriting in the context of a parallelizing compiler:
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Other researchers have run into similar questions to pick a fitting equivalence for verification and encoding
challenges [e.g. 3, 4]. Theoretically, van Glabbeek’s “linear-time–branching-time spectrum” [5, 6, 7] brings
order to the zoo of equivalences by casting them as a hierarchy of modal logics. But practically, it is difficult
to navigate in particular the second part [6], which considers so-called weak equivalences that abstract
from “internal” behavior, expressed by “silent” τ -steps. Abstracting internal behavior is crucial to model
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p is preordered to q
w.r.t. notion of
equivalence N

:⇐⇒

van Glabbeek’s
spectrum approach [6]

no formula below eN
distinguishes p from q

(Section 3)
⇐⇒

Bisping’s spectroscopy
approach [9] (Section 5)

defender wins spectroscopy game
G△ from [p, {q}]a with energy eN

(Section 4)

Figure 1: How the paper combines the weak spectrum [6] and the spectroscopy approach [9].

communication happening without participation of the observer and to inspect refinements, that is, for
virtually every application.

In this paper, we strive to operationalize the silent-step spectrum of van Glabbeek’s “Linear-time–bran-
ching-time spectrum II” [6]. The resulting algorithm enables researchers to provide a set of processes that
ought to be equated (or distinguished) for their scenario and to learn “where” in the spectrum this set of
(in-)equivalences holds. Implicitly, we obtain decision procedures (and games) for each individual notion
of equivalence as a by-product. This continues our project of deciding all behavioral equivalences at once,
which began with a game for linear-time–branching-time spectroscopy [8]. There, we solved the problem
for van Glabbeek’s strong spectrum without silent steps [5]. So, the present article can be understood as a
second part to [8], analogously to van Glabbeek’s two publications on the spectrum.

As outlined in Figure 1, we apply our improved recent approach [9] to use a generalized bisimulation
energy game with moves corresponding to sets of conceivable distinguishing formulas. The game is a multi-
weighted energy game [9, 10, 11] where moves use up attacker’s resources to distinguish processes, which
correspond to syntactic features of Hennessy–Milner logic (HML) formulas. Thereby, defender-won energy
levels reveal non-distinguishing subsets of HML and thus sets of maintained equivalences.

Applying the above approach to the weak spectrum faces many obstacles: The modal logics of the weak
spectrum in [6] are quite intricate and are not closed under HML-subterms. Also, van Glabbeek [6] does not
account for unstable linear-time equivalences, but other publications like Gazda et al. [12] use these. On
the game side, existing weak bisimulation games by De Frutos Escrig et al. [13] and Bisping et al. [14] lack
moves for many observations that are relevant for weaker notions in the spectrum. This paper shows how
all this can still be brought together.

Contributions. At its core, this paper leverages the spectroscopy energy game approach of [9] with modalities
needed to cover the weak equivalence spectrum of [6], namely, delayed observations, stable conjunctions,
and branching conjunctions. More precisely:

• In Section 3, we capture a big chunk of the linear-time–branching-time spectrum with silent steps by
measuring expressive powers used in HML-subsets, which we prove to correspond to a hierarchy of
notions between stability-respecting branching bisimilarity and weak trace equivalence.

• In Section 4, we introduce the first generalized game characterization of the silent-step equivalence
spectrum. For this, we adapt the spectroscopy energy game of [9] to account for distinctions in terms of
delayed observations (⟨ε⟩⟨a⟩ . . .), stable conjunctions (⟨ε⟩

∧
{¬⟨τ⟩T, . . .}), and branching conjunctions

(⟨ε⟩
∧
{⟨a⟩ . . . , ⟨ε⟩ . . .}).

• Section 5 proves that winning energy levels and equivalences coincide by closely relating distinguishing
formulas and ways the attacker may win the energy game.

• Section 6 lays out how to utilize the game for everyday research to decide all equivalences at once
using our prototype tool and discusses application to further equivalences.

• Section 7 treats the exponential complexity of the algorithm, and shows how a less-exponential game
can be employed to alleviate the worst part of it.

The work is framed by some preliminaries in Section 2 and a discussion of related work in Section 8.
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Figure 2: A pair of processes Pe and Pℓ together with versions Pτ
e and Pτ

ℓ of the two where idle has been abstracted into
internal τ -behavior.

Formalization. The core results of this article have been formalized in Isabelle/HOL. The theory [15] can
be found on https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy. Im-
portant lemmas come with a -footnote pointing to the corresponding Isabelle facts.

What’s New?. Compared to the EXPRESS/SOS’24 version of this work [1], the biggest new contribution
is the deep treatment of modal characterizations (Section 3). Also, Section 6 has been extended, and most
of Section 7 is new material, providing improved complexity bounds using a better game algorithm and a
trick to reduce the game’s branching degree. Moreover, we include all interesting proofs and links to the
Isabelle/HOL formalization, as well as some small corrections.

2. Distinctions and Equivalences in Systems with Silent Steps

This paper follows the paradigm that equivalence is the absence of possibilities to distinguish. Equiv-
alently, one could speak about apartness, i.e. the view that non-equivalence is based on evidence of dif-
ference [16]. Technically, this view allows to characterize most equivalences through inductive definitions,
without resorting to coinduction. We begin by introducing the things we want to equate or distinguish: states
in transition systems (Subsection 2.1). Then, we define how to express distinctions: by Hennessy–Milner
logic formulas (Subsection 2.2).

2.1. Transition Systems and Equivalences

Definition 2.1 (Labeled transition system with silent steps). A labeled transition system is a tuple S =
(P,Σ,−→) where P is the set of processes, Σ is the set of actions, and −→ ⊆ P × Σ × P is the transition
relation.

τ ∈ Σ labels silent steps and ↠ is notation for the reflexive transitive closure of internal activity
τ−→∗.

The name ε /∈ Σ is reserved and indicates no (visible) action. A process p is called stable if p ̸τ−→. We write
p

(α)−−→ p′ if p
α−→ p′, or if α = τ and p = p′.

We implicitly lift the relations to sets of processes P
α−→ P ′ (with P, P ′ ⊆ P, α ∈ Σ), which is defined to

be true if P ′ = {p′ ∈ P | ∃p ∈ P. p α−→ p′}.

Example 2.1. Figure 2 presents transition systems of four processes: Pe makes a nondeterministic choice
op between a and b, performing arbitrarily many idle-actions in between. Pℓ does the same but can change
the choice while idling. Pτ

e and Pτ
ℓ are variants of the two obtained by abstracting idle into τ -actions.

The example is helpful to test whether a process equivalence can be a congruence for abstraction. Any
congruence for abstraction ∼ would need to have the property that Pe ∼ Pℓ implies Pτ

e ∼ Pτ
ℓ . So, if we just

had a quick way of testing for all weak behavioral equivalences at once, we could quickly narrow down which
equivalences work for this example. Incidentally, this paper’s spectroscopy algorithm can do precisely this:
decide all equivalences at once.
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In the next section, we will encounter many behavioral equivalences for systems with internal behavior.
As a first taste, let us look at the coarsest and the finest ones, and how they are commonly defined in the
literature.

The coarsest common notion of equivalence for systems with silent steps is weak trace equivalence. It can
be understood as a form of language equivalence on the words that can be observed starting from states,
where τ -steps are skipped.

Definition 2.2 (Word steps). We extend the notion ↠ from τ -sequences to words w⃗ ∈ Σ∗ as follows:

• If w⃗ is the empty word λ, we have p
w⃗
↠ p′ iff p↠ p′.

• If w⃗ = w⃗′τ , we have p
w⃗
↠ p′ iff p

w⃗′

↠ p′.

• If w⃗ = w⃗′a, we have p
w⃗
↠ p′′ iff there exists p′ such that p

w⃗′

↠ p′
a−→↠ p′′.

Definition 2.3 (Weak trace preorder and equivalence). Let wtraces(p) be the set of w⃗ ∈ Σ∗ such that there
is some p′ with p

w⃗
↠ p′.

For two processes p and q, we say that p is weakly trace-preordered to q iff wtraces(p) ⊆ wtraces(q).
Moreover, precisely if wtraces(p) = wtraces(q), then p and q are weakly trace-equivalent.

In Example 2.1, Pe and Pℓ are weakly trace-equivalent because wtraces(Pe) = wtraces(Pℓ). Pτ
e and Pτ

ℓ

are weakly trace-equivalent as well. Also, Pτ
e is weakly trace-preordered to Pe, but not the other way around

because of (op, idle) ∈ wtraces(Pe) \ wtraces(Pτ
e ).

The finest common notion of equivalence for systems with silent steps is stability-respecting branching
bisimilarity. Let us quickly recall its operational definition (for instance from [17]); for a visualization, see
Figure 3:

Definition 2.4 (Branching bisimilarity, operationally; stability-respecting relations). A symmetric relation
R is a branching bisimulation if, for all (p, q) ∈ R, a step p

α−→ p′ implies (1) α = τ and (p′, q) ∈ R, or
(2) q ↠ q′

α−→ q′′ for some q′, q′′ with (p, q′) ∈ R and (p′, q′′) ∈ R.
If moreover for every (p, q) ∈ R with p ̸τ−→, there is some q′ with q ↠ q′ ̸τ−→ and (p, q′) ∈ R, the relation

is stability-respecting.
If there is a stability-respecting branching bisimulation RBBsr with (p0, q0) ∈ RBBsr , then p0 and q0 are

stability-respecting branching bisimilar.

For instance, Aτ
ℓ and Bτ

ℓ of Example 2.1 are (stability-respecting) branching bisimilar as R := {(Aτ
ℓ ,B

τ
ℓ ),

(Bτ
ℓ ,A

τ
ℓ ), (A

τ
ℓ ,A

τ
ℓ ), (B

τ
ℓ ,B

τ
ℓ ), (◦, ◦)} is a stability-respecting branching bisimulation.

Neither Pe and Pℓ, nor P
τ
e and Pτ

ℓ are branching bisimilar. The reason is that they each can do transitions
to states that allow different weak traces than the other process. But the in-equivalence of states can more
easily be discussed through the lense of modal characterizations.

2.2. Hennessy–Milner Logic for Branching Bisimilarity

Bisimilarity and other notions of equivalence can conveniently by defined in terms of Hennessy–Milner
logic. We direct our attention to variants that allow for silent behavior to happen before visible actions are
observed. We thus focus on the following variant, where the brick-red part represents stable conjunctions
and the steel-blue part branching conjunctions:

Definition 2.5 (Branching Hennessy–Milner logic). We define stability-respecting branching Hennessy–
Milner modal logic, HMLsrbb, over an alphabet of actions Σ by the following context-free grammar starting
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Figure 3: Branching simulation and respect for stability in Definition 2.4 (thick black part implies thin red part).

with φ:

HMLsrbb : φ ::= ⟨ε⟩χ “delayed observation”

|
∧
{ψ,ψ, ...} “immediate conjunction”

χ ::= ⟨a⟩φ with a ∈ Σ \ {τ} “observation”

|
∧
{ψ,ψ, ...} “standard conjunction”

|
∧
{¬⟨τ⟩T, ψ, ψ, ...} “stable conjunction”

|
∧
{(α)φ,ψ, ψ, ...} with α ∈ Σ “branching conjunction”

ψ ::= ¬⟨ε⟩χ | ⟨ε⟩χ “negative / positive conjuncts”

Its semantics J · KS : HMLsrbb → 2P, where a formula “is true,” over a transition system S = (P,Σ,−→)
is defined in mutual recursion with helper functions J · Kε for subformulas in the “delayed” context (χ-
productions) and J · K∧ for conjuncts (ψ-productions):

J⟨ε⟩χKS := {p ∈ P | ∃p′ ∈ JχKSε . p↠ p′}

J
∧

ΨKS := J
∧

ΨKSε :=
⋂
{JψKS∧ | ψ ∈ Ψ}

J⟨a⟩φKSε := {p ∈ P | ∃p′ ∈ JφKS . p a−→ p′}

J¬⟨τ⟩TKS∧ := {p ∈ P | p ̸τ−→}

J(α)φKS∧ := {p ∈ P | ∃p′ ∈ JφKS . p (α)−−→ p′}

J¬⟨ε⟩χKS∧ := P \ J⟨ε⟩χKS∧

J⟨ε⟩χKS∧ := J⟨ε⟩χKS∧
{ψ,ψ, ...} in the grammar stands for conjunction with arbitrary branching, which includes infinite

conjunctions. We write T for the empty conjunction
∧
∅.

Definition 2.6 (Distinguishing formulas). A formula φ ∈ HMLsrbb is said to distinguish a process p from
q iff p ∈ JφKS and q /∈ JφKS. The formula is said to distinguish a process p from a set of processes Q iff it is
true for p and false for every q ∈ Q.

Example 2.2. In Example 2.1, φτ := ⟨ε⟩⟨op⟩⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩T} distinguishes Pτ

e from Pτ
ℓ . Formula φτ states

that a weak op-step may happen such that, afterwards, b is not τ -reachable. This is true of Pτ
e because of

the Aτ
e -state, but not of P

τ
ℓ .
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The name already alludes to HMLsrbb as a whole characterizing stability-respecting branching bisimilarity.
The power of Definition 2.5 to distinguish mirrors exactly the power of Definition 2.4 to equate:

Lemma 2.1. HMLsrbb characterizes stability-respecting branching bisimilarity.1

This kind of characterization result between a modal logic and a notion of equivalence is usually referred
to as a Hennessy–Milner theorem. We will prove it as Lemma 3.3, together with a few similar facts.

Coarser notions of equivalence can then be characterized through subsets of the logic. For instance, we
can mirror Definition 2.3 as follows:

Lemma 2.2. Consider the subset OT ⊆ HMLsrbb given by the following grammar:

OT : φT ::= ⟨ε⟩⟨a⟩φT | ⟨ε⟩T | T with a ∈ Σ \ {τ}.

There is a formula φ ∈ OT distinguishing p from q precisely if p is not trace-preordered to q.2

Proof. Clearly, for a word w⃗ = a1 . . . an ∈ (Σ \ {τ})∗, the formula ⟨ε⟩⟨a1⟩ . . . ⟨ε⟩⟨an⟩⟨ε⟩T ∈ OT is true for a
state p precisely if there is a p′ such that p

w⃗
↠ p′, that is, if w⃗ ∈ wtraces(p). As wtraces(p) = wtraces(q) for

states p and q precisely if wtraces(p) ∩ (Σ \ {τ})∗ = wtraces(q) ∩ (Σ \ {τ})∗, this completes the proof.

Remark 2.1. Definition 2.5 is constructed to fit the distinctive powers we need from HML to characterize
varying notions of the weak spectrum by controlling which productions are used. Subformulas in the
grammar usually start with ⟨ε⟩ . . ., effectively hiding silent steps. Formulas with fewer ⟨ε⟩-positions bring
in additional distinctive power. We will use immediate conjunctions to distinguish non-delay-bisimilar
processes, and branching conjunctions (that contain one positive conjunct without leading ⟨ε⟩) to distinguish
non-η-(bi)similar processes. Allowing the observation of stabilization, ¬⟨τ⟩T, increases distinctive power;
requiring stabilization for conjunct observations (i.e. disallowing other conjunctions) decreases it.

3. Recharting the Weak Spectrum of Behavioral Equivalences

As our first main contribution, we provide a variation of van Glabbeek’s linear-time–branching-time
spectrum part II for systems with silent steps [6]. While his part I on notions ignoring silent steps has seen a
journal version [7] and refinements by others [18], part II has only been published as “extended abstract” [6]
(accompanied by a “preliminary version” on van Glabbeek’s website reporting some proofs, but sketchy in
parts).

So, in this section, we introduce our version of the silent-step spectrum in Subsection 3.1, and then do
the legwork of relating it to common definitions of the notions with proofs for all interesting cases.

Our main goal is to capture the spectrum quantitively such that it works well with our game approach
of the next section. But our variant of the weak spectrum is also interesting in its own right as we use
HMLsrbb, which is a more-standard Hennessy–Milner logic than the one of [6]. Moreover, we increase clarity
by leaving aside many variants of notions from [6], and, on the other hand, cater for some additional ones
such as (im-)possible futures and unstable failures.

3.1. The Silent-Step Spectrum

At the core, we follow van Glabbeek’s [6] approach to define partially ordered “notions of observability,”
which entail behavioral preorders and equivalences given as modal characterizations.

Definition 3.1 (Equivalence spectra and preorders). An equivalence spectrum (N,≤,ON∈N) consists of

• notions of observability, N, partially ordered by ≤ ⊆ N×N, and

1 lemma Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_is_hmlsrbb
2 lemma Weak_Traces.LTS_Tau.trace_equals_trace_to_formula

6

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Branching_Bisimilarity.html#Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_is_hmlsrbb|fact
https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Weak_Traces.html#Weak_Traces.LTS_Tau.trace_equals_trace_to_formula|fact


stability-respecting branching bisim BBsr

∞,∞,∞,∞,∞,∞,∞,∞

branching bisim BB
∞,∞,∞, 0,∞,∞,∞,∞

η-bisim η
∞,∞,∞, 0, 0,∞,∞,∞

delay bisim DB
∞, 0,∞, 0,∞,∞,∞,∞

weak bisim B
∞, 0,∞, 0, 0,∞,∞,∞

2-nested sim 2S
∞, 0,∞, 0, 0,∞,∞, 1

contrasim C
∞, 0,∞, 0, 0, 0,∞,∞

ready sim RS
∞, 0,∞, 0, 0,∞, 1, 1

readiness R
∞, 0, 1, 0, 0, 1, 1, 1

possible futures PF
∞, 0, 1, 0, 0,∞,∞, 1

impossible futures IF
∞, 0, 1, 0, 0, 0,∞, 1

weak sim 1S
∞, 0,∞, 0, 0,∞, 0, 0

η-sim ηS
∞,∞,∞, 0, 0,∞, 0, 0

failures F
∞, 0, 1, 0, 0, 0, 1, 1

weak traces T
∞, 0, 0, 0, 0, 0, 0, 0

s.-r. delay bisim DBsr

∞, 0,∞,∞,∞,∞,∞,∞

stable bisim SB
∞, 0, 0,∞, 0,∞,∞,∞

stable ready sim RSs

∞, 0, 0,∞, 0,∞, 1, 1

stable readiness Rs

∞, 0, 0, 1, 0, 1, 1, 1

stable imposs. fut. IFs

∞, 0, 0, 1, 0, 0,∞, 1

stable failures Fs

∞, 0, 0, 1, 0, 0, 1, 1

Figure 4: Hierarchy of weak behavioral equivalences/preorders, becoming finer towards the top. Each notion N comes with its
expressiveness coordinate eN .

• corresponding logics ON : 2HMLsrbb for N ∈ N.

ON∈N must be monotonic, that is: for any two notions N,M ∈ N, it holds that N ≤M implies ON ⊆ OM .
A sublogic, ON ⊆ HMLsrbb, corresponding to a notion of observability N , distinguishes two processes,

p ̸⪯N q, if there is φ ∈ ON with p ∈ JφKS and q /∈ JφKS . Otherwise N preorders them, p ⪯N q. If processes
are mutually N -preordered, p ⪯N q and q ⪯N p, then they are considered N-equivalent, p ∼N q.

The monotonicity of the definition yields that “upper” notions entail “lower” ones:

Lemma 3.1. If N ≤M , then p ⪯M q implies p ⪯N q.

Van Glabbeek [6] uses about 20 binary dimensions to characterize 155 “notions of observability” (derived
from five dimensions of testing scenarios).
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In our version, we capture the notions of observability as coordinates in a quantitative 8-dimensional
space of syntactic features in HML formulas.

We will “price the expressiveness” of HMLsrbb-formulas by vectors we call energies. The pricing allows
to conveniently select subsets ON ⊆ HMLsrbb in terms of coordinates.

Definition 3.2 (Energies). We denote as energies, En∞, the set (N ∪ {∞})8.
We compare energies component-wise: (e1, . . . , e8) ≤ (f1, . . . , f8) iff ei ≤ fi for each i. Least upper

bounds sup are defined as usual as component-wise supremum.
We write êi for the standard unit vector where the i-th component is 1 and every other component

equals 0. The vector (0, 0, . . . , 0) is written as 0. Vector addition and subtraction happen component-wise,
as usual.

In Figure 4, we order weak equivalences along dimensions of HMLsrbb-expressiveness in terms of operator
depths (i.e.maximal occurrences of an operator on a path from root to leaf in the abstract syntax tree).
Intuitively, the dimensions are:

1. Modal depth (of observations ⟨a⟩, (α)),
2. Depth of branching conjunctions (with one (α)-observation conjunct, not starting with ⟨ε⟩),
3. Depth of unstable conjunctions (that do not enforce stability by a ¬⟨τ⟩T-conjunct),
4. Depth of stable conjunctions (that do enforce stability by a ¬⟨τ⟩T-conjunct),
5. Depth of immediate conjunctions (that are not preceded by ⟨ε⟩),
6. Maximal modal depth of positive conjuncts in conjunctions,
7. Maximal modal depth of negative conjuncts in conjunctions,
8. Depth of negations.

Definition 3.3 (Formula prices). The expressiveness price of a formula expr : HMLsrbb → En∞ is defined
in mutual recursion with helper functions exprε and expr∧; if multiple rules apply to a subformula, pick the
first one:

expr (T) := exprε (T) := 0

expr (⟨ε⟩χ) := exprε (χ)

expr (
∧
Ψ) := ê5 + exprε (

∧
Ψ)

exprε (⟨a⟩φ) := ê1 + expr (φ)

exprε (
∧
Ψ) := sup {expr∧ (ψ) | ψ ∈ Ψ}+


ê4 if ¬⟨τ⟩T ∈ Ψ

ê2 + ê3 if there is (α)φ ∈ Ψ

ê3 otherwise

expr∧ (¬⟨τ⟩T) := (0, 0, 0, 0, 0, 0, 0, 1)

expr∧ (¬φ) := sup {ê8 + expr (φ) , (0, 0, 0, 0, 0, 0, (expr (φ))1 , 0)}
expr∧ ((α)φ) := sup {ê1 + expr (φ) , (0, 0, 0, 0, 0, 1 + (expr (φ))1 , 0, 0)}

expr∧ (φ) := sup { expr (φ) , (0, 0, 0, 0, 0, (expr (φ))1 , 0, 0)}

Definition 3.4 (Linear-time–branching-time equivalences). Each notion N named in Figure 4 with coor-
dinate eN is defined through the language of formulas with prices below, i.e., through ON = {φ | expr(φ) ≤
eN}.

Recalling Definition 3.1, that is, p ⪯N q with respect to notionN , iff no φ with expr(φ) ≤ eN distinguishes
p from q. So, this paper sees notions of preorder / equivalence to be primarily defined through these
coordinates and not through other characterizations.

Example 3.1. The formula φτ = ⟨ε⟩⟨op⟩⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩T} in Example 2.2 has expressiveness price expr(φτ ) =

(2, 0, 1, 0, 0, 0, 1, 1). The coordinate is below the one of failures eF = (∞, 0, 1, 0, 0, 0, 1, 1) in Figure 4. Ac-
cordingly, Pτ

e is distinguished from Pτ
ℓ by the failure observation φτ ∈ OF, that is, P

τ
e ̸⪯F Pτ

ℓ . There neither
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are strictly-stable nor strictly-positive formulas to distinguish Pτ
e from Pτ

ℓ . Therefore, stable bisimulation
preorder, Pτ

e ⪯SB Pτ
ℓ , and η-simulation preorder, Pτ

e ⪯ηS Pτ
ℓ , apply. (The latter implies the more well-known

weak simulation preorder.)

For stability-respecting branching bisimilarity, where OBBsr = HMLsrbb, Lemma 2.1 establishes that
our modal characterization corresponds to the common operational definition. For some notions, there are
superficial differences to other modal characterizations in the literature. We devote the remainder of the
section to prove that we still characterize the same behavioral equivalences. But first, we give two examples
of the nature of the differences.

Example 3.2 (Weak trace equivalence and preorder). The notion of weak trace preorder (and equivalence) is
defined through eT = (∞, 0, 0, 0, 0, 0, 0, 0) and Definition 3.3 inducing exactly the language OT of Lemma 2.2.

Note that OT slightly deviates from languages one would find in other publications. For instance, Gazda
et al. [12] do not have the second production. But this production does not increase expressiveness, as
J⟨ε⟩TK = JTK = P.

Example 3.3 (Weak bisimulation equivalence and preorder). The logic of weak bisimulation observations
OB defined through eB = (∞, 0,∞, 0, 0,∞,∞,∞) equals the language defined by the grammar:

OB : φB ::= ⟨ε⟩⟨a⟩φB | ⟨ε⟩
∧
{ψB, ψB, . . .} | T

ψB ::= ¬⟨ε⟩⟨a⟩φB | ¬⟨ε⟩
∧
{ψB, ψB, . . .} | ⟨ε⟩⟨a⟩φB | ⟨ε⟩

∧
{ψB, ψB, . . .}.

Let us contrast this to the definition for weak bisimulation observations OB′ from Gazda et al. [12]:

OB′ : φB′ ::= ⟨ε⟩φB′ | ⟨ε⟩⟨a⟩⟨ε⟩φB′ |
∧
{φB′ , φB′ , . . .} | ¬φB′ .

Our OB allows a few formulas that OB′ lacks, e.g. ⟨ε⟩⟨a⟩⟨ε⟩⟨a⟩⟨ε⟩T. This does not add expressiveness as
OB′ has ⟨ε⟩⟨a⟩⟨ε⟩⟨ε⟩⟨a⟩⟨ε⟩T and J⟨ε⟩⟨ε⟩φK = J⟨ε⟩φK.

For the other direction, there is a bigger difference due to OB′ allowing more freedom in the placement of
conjunction and negation. In particular, it permits top-level conjunctions and negated conjunctions without
⟨ε⟩ in between. But these features do not add distinctive power. OB′ also allows top-level negation, and
this adds distinctive power to the preorders, effectively turning them into equivalence relations. We do not
enforce this and thus our ⪯B ̸= ∼B; for instance, τ.a ⪯B τ +τ.a, but τ +τ.a ̸⪯B τ.a due to ⟨ε⟩

∧
{¬⟨ε⟩⟨a⟩T}.

However, as a distinction by ¬φ in one direction implies one by φ in the other, we know that this difference
is ironed out once we consider the equivalence ∼B.

Remark 3.1. None of the logics in Figure 4 restrict the first dimension, but the modal depth is kept to
simplify the calculation of dimensions 6 and 7. It could also be used to define k-step bisimilarity and similar
notions.

More generally, there is no deeper necessity to use exactly the dimensions that this paper employs or
the original ones of [6]—in both cases, they are chosen in order to conveniently cover notions of equivalence
that stem from varying contexts. To cover even more notions, additional dimensions would be necessary, as
we will discuss in Subsection 6.3.

Remark 3.2. Compared with the workshop version of this paper [1], we have slightly modified Defini-
tion 3.3 to have expr(

∧
{¬⟨τ⟩T}) = (0, 0, 0, 1, 0, 0, 0, 1). Previously, we had priced such “empty” stable

conjunctions at (0, 0, 0, 1, 0, 0, 0, 0). The previous definition included observations of “failures to stabilize”
like

∧
{¬⟨τ⟩T,¬⟨a⟩

∧
{¬⟨τ⟩T}} in the language of stable ready simulation, which is incorrect. The change

prevents this kind of problem.

3.2. Abstractions of Simulation

In Definition 3.4, there are two abstractions of the common strong simulation equivalence for systems
with silent steps. We call a weak notion an abstraction of a strong one if the two coincide on transition
systems without τ -transitions.
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Definition 3.5 (Weak simulation). A relation R is a weak simulation if, for all (p, q) ∈ R, a step p
α−→ p′

implies (1) α = τ and (p′, q) ∈ R, or (2) q ↠ α−→↠ q′ for some q′ with (p′, q′) ∈ R.

Definition 3.6 (η-simulation). A relation R is an η-simulation if, for all (p, q) ∈ R, a step p
α−→ p′ implies

(1) α = τ and (p′, q) ∈ R, or (2) q ↠ q′
α−→↠ q′′ for some q′, q′′ with (p, q′) ∈ R and (p′, q′′) ∈ R.

The notions defined by coordinates e1S = (∞, 0,∞, 0, 0,∞, 0, 0) and eη = (∞,∞,∞, 0, 0,∞, 0, 0) of
Definition 3.4 exactly match the operational definitions.

For instance, the grammar induced by e1S to define ⪯1S through O1S reads:

O1S : φ1S ::= ⟨ε⟩⟨a⟩φ1S | ⟨ε⟩
∧
{ψ1S, ψ1S, . . .} | T

ψ1S ::= ⟨ε⟩⟨a⟩φ1S | ⟨ε⟩
∧
{ψ1S, ψ1S, . . .}

Lemma 3.2. The following equivalences hold:

• There is a weak simulation R1S with (p0, q0) ∈ R1S, precisely if p0 is weakly simulated by q0, p0 ⪯1S q0.

• There is an η-simulation Rη with (p0, q0) ∈ Rη, precisely if p0 is η-simulated by q0, p0 ⪯ηS q0.
3

Proof. Let N ∈ {1S, ηS} be a notion of observability. We prove that there is no formula φ ∈ ON distin-
guishing p0 from q0, if and only if there is an N -simulation SN (according to Definitions 3.5 and 3.6) with
(p0, q0) ∈ SN .

Assume no φ ∈ ON distinguishes p0 from q0. Consider SN := {(p, q) | ∀φ ∈ ON . p ∈ JφK −→ q ∈ JφK}.
Clearly, (p0, q0) ∈ SN . We will show SN to satisfy the operational definition of N -simulation.

• If N = ηS, we need to prove η-simulation (by contradiction): Assume p
α−→ p′, (p, q) ∈ SηS, but for all

q′ and q′′ with q ↠ q′
(α)−−→↠ q′′, (p, q′) /∈ SηS or (p′, q′′) /∈ SηS. Let

Qε := {q′ | q ↠ q′ ∧ (p, q′) /∈ SηS}
Qα := {q′ | q ↠ q′ ∧ (p, q′) ∈ SηS ∧ ∀q′′.q′

(α)−−→↠ q′′ −→ (p′, q′′) /∈ SηS}.

We then define:

– For q′ ∈ Qε, let φ ∈ OηS be a formula that distinguishes p from q′. (Such a formula exist by the
definition of SηS and Qε.) Note that φ always has the form ⟨ε⟩χ. We define ψε,q′ := ⟨ε⟩χ.

– For q′ ∈ Qα and q′′ with q′
(α)−−→↠ q′′, let φ ∈ OηS be a formula that distinguishes p′ from q′′. We

define ψα,q′,q′′ := φ.

Now consider φη = ⟨ε⟩
∧
{(α)

∧
{ψα,q′,q′′ | q′ ∈ Qα, q

′ (α)−−→↠ q′′}} ∪ {ψε,q′ | q ∈ Qε}. This formula
combines all the distinctions and holds for p because we know of the p

α−→ p′ transition. It cannot
hold for q because all paths from q must either pass through Qε or Qα. So it distinguishes p from q,
contradicting (p, q) ∈ SηS.

• We need to prove weak simulation on
a−→. Assume p

a−→ p′ and (p, q) ∈ SN , but for all q′ with
q ↠

a−→↠ q′, we have (p′, q′) /∈ SN . For each such q′, there is a distinguishing formula ⟨ε⟩χ ∈ ON

with p′ ∈ J⟨ε⟩χK and q′ /∈ J⟨ε⟩χK. Set ψq′ := ⟨ε⟩χ. This ψq′ is a correct positive conjunct (of shape
ψ in Definition 2.5). Then, ⟨ε⟩⟨a⟩⟨ε⟩

∧
{ψq′ | q ↠

a−→↠ q′} ∈ ON distinguishes p from q, contradicting
(p, q) ∈ SN .

• We need to prove weak simulation on
τ−→ (by contradiction): Assume p

τ−→ p′ and (p, q) ∈ SN , but for
all q′ with q ↠ q′, we have (p′, q′) /∈ SN . (Note that this includes (p′, q) /∈ SN , as q ↠ q.) Similarly
to the previous case, we find a ψq′ for every such q′. Then, ⟨ε⟩

∧
{ψq′ | q ↠ q′} ∈ ON distinguishes p

from q, contradicting (p, q) ∈ SN .

3 theorem Eta_Bisimilarity.LTS_Tau.eta_sim_coordinate
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For the other direction, assume that there is an N -simulation SN with (q0, p0) ∈ SN . This means
p0 ≾N q0, where ≾N is the greatest N -simulation (i.e., the entitiy that is referred to as “the weak/η-
simulation preorder” in other publications). Assume moreover that p0 ∈ JφK, for a formula φ ∈ ON . We
will show that this implies q0 ∈ JφK by induction over the structure of φ (and inner ψ) with arbitrary p0
and q0.

• Case φ = ⟨ε⟩χ. That p ∈ J⟨ε⟩χK, implies there are p
τ−→n p′ such that p′ ∈ JχKε. To prove q ∈ J⟨ε⟩χK,

we will establish that there is q′ ∈ JχKε with q ↠ q′ by considering the cases for χ:

– Case χ = ⟨a⟩⟨ε⟩χ′. This implies there is p′′ with p′
a−→ p′′ and p′′ ∈ J⟨ε⟩χ′K. Due to η- or weak

simulation, there are q′, q′′ with q ↠ q′
a−→↠ q′′ and p′′ ≾N q′′. With the induction hypothesis,

this implies q′′ ∈ J⟨ε⟩χ′K, and due to the HML semantics, q′ ∈ J⟨a⟩⟨ε⟩χ′Kε.

– Case χ =
∧
Ψ. We know that each ψ ∈ Ψ must be true for p′. If we can choose an appropriate

q′ with q ↠ q′ and p′ ≾N q′, the induction hypothesis implies each ψ of the form ⟨ε⟩χ′ to be true
for q′ as well.

If there is ψ = (α)φ′ ∈ Ψ (which implies N = ηS), there are p′′ ∈ Jφ′K and p′
(α)−−→ p′′. Then we

can choose q′ to satisfy q ↠ q′
(α)−−→↠ q′′ with p′ ≾ηS q

′ and p′′ ≾ηS q
′′, thanks to ≾ηS being an

η-simulation. By induction hypothesis, φ′ must be true for q′′ as well and thus (α)φ′ holds for
this q′.

If no such conjunct is present, we just take q′ = q if p = p′, or otherwise some q′ with q ↠ q′ and
p′ ≾N q′ that must exist by the simulation property of ≾N on p

τ−→n p′.

In every case, we have found a q′ ∈ J
∧
ΨK.

• Case ψ = ⟨ε⟩χ. The proof of the first case also addresses this case.

3.3. Abstractions of Bisimilarity

Our weak spectrum of Definition 3.4 features a total of eight notions that abstract strong bisimilarity:
the whole part north of (and including) contrasimilarity and stable bisimilarity.

We will first prove the coincidence of operational and coordinate characterization for the upper diamonds
around (stability-respecting) η/branching/weak/delay bisimilarity, which subsumes Lemma 2.1.

Afterwards, we will turn our attention to the two lower antennas: contrasimilarity and stable bisimilarity.
In general, there is much overlap of ideas between the proofs, and most of the core tricks have already been
used for the simulations of the previous sections.

Definition 3.7 (Delay simulation). A relation R is a delay simulation if, for all (p, q) ∈ R, a step p
α−→ p′

implies (1) α = τ and (p′, q) ∈ R, or (2) q ↠ q′
α−→ q′′ for some q′, q′′ with (p′, q′′) ∈ R.

Lemma 3.3. The following equivalences hold:

• There is a symmetric weak simulation RWB with (p0, q0) ∈ RWB, precisely if p0 is weakly bisimilar to
q0, that is, p0 ∼WB q0.

• There is a (stability-respecting) symmetric delay simulation RDB with (p0, q0) ∈ RDB, precisely if the
two are (stability-respectingly) delay bisimilar, p0 ∼DB q0 (respectively, p0 ∼DBsr q0).

• There is a symmetric η-simulation Rη with (p0, q0) ∈ Rη, precisely if the two are η-bisimilar, p0 ∼η q0.
4

• There is a (stability-respecting) branching bisimulation RBB with (p0, q0) ∈ RBB, precisely if the two
are (stability-respectingly) branching-bisimilar, p0 ∼BB q0 (respectively, p0 ∼BBsr q0).

5

4 theorem Eta_Bisimilarity.LTS_Tau.eta_bisim_coordinate
5 theorem Branching_Bisimilarity.LTS_Tau.sr_branching_bisim_coordinate
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Proof. Let N ∈ {BBsr,BB, η,DBsr,DB,B} be a notion of observability. We prove that there is no formula
φ ∈ ON distinguishing p0 from q0, or distinguishing q0 from p0, if and only if there is an N -bisimulation
RN (according to Definitions 2.4, 3.5, 3.6, and 3.7) with (p0, q0) ∈ RN .

Assume no φ ∈ ON distinguishes p0 from q0 and no φ ∈ ON distinguishes q0 from p0. Consider
RN := {(p, q) | ∀φ ∈ ON . p ∈ JφK ←→ q ∈ JφK}. Clearly, (p0, q0) ∈ RN . Also, the relation RN is
symmetric. We will show RN to satisfy the operational definition of N -bisimulation.

• If N ∈ {BBsr,DBsr}, we need to prove respect of stability (by contradiction): Assume there is (p, q) ∈
RN with p ̸τ−→ but all q′ with q ↠ q′ ̸τ−→ have (p, q′) /∈ RN . For each q′ with q ↠ q′ ̸τ−→, there is:

– . . . either a distinguishing formula φ ∈ ON with p ∈ JφK and q′ /∈ JφK. If φ is some immediate
conjunction

∧
Ψ, choose ψq′ ∈ Ψ such that q′ /∈ Jψq′K∧ (at least one such element of Ψ must

exist). Otherwise, set ψq′ := φ.

– . . . or a distinguishing formula φ ∈ ON with q′ ∈ JφK and p /∈ JφK. If φ is some immediate

conjunction
∧
Ψ, choose ψ̂ ∈ Ψ such that p /∈ Jψ̂K∧ (at least one such element of Ψ must exist)

and let ψq′ be its negation. Otherwise, set ψq′ := ¬φ, with the understanding that ¬¬φ is
simplified to φ.

In any case, ψq′ is a correct conjunct (of shape ψ in Definition 2.5). Then, ⟨ε⟩
∧
{¬⟨τ⟩T} ∪ {ψq′ | q ↠

q′ ̸τ−→} ∈ ON distinguishes p from q, contradicting (p, q) ∈ RN .

• If N ∈ {BBsr,BB}, we need to prove branching simulation on
a−→ (by contradiction): Assume p

a−→ p′

and (p, q) ∈ RN , but for all q′ and q′′ with q ↠ q′
a−→ q′′, (p, q′) /∈ RN or (p′, q′′) /∈ RN . Let

Qε = {q′ | q ↠ q′ ∧ (p, q′) /∈ RN}
Qa = {q′ | q ↠ q′ ∧ (p, q′) ∈ RN ∧ ∀q′′.q′

a−→ q′′ −→ (p′, q′′) /∈ RN}.

We then define:

– For q′ ∈ Qε, let φ ∈ ON be a formula that distinguishes p from q′, or a formula that distinguishes
q′ from p. We define ψε,q′ as above, where we prove respect of stability.

– For q′ ∈ Qa and q′′ with q′
a−→ q′′, let φ ∈ ON be a formula that distinguishes p′ from q′′, or a

formula that distinguishes q′′ from p′. We define ψa,q′,q′′ similarly to where we prove respect of
stability.

Now consider φη = ⟨ε⟩
∧
{⟨a⟩

∧
{ψa,q′,q′′ | q′ ∈ Qa, q

′ a−→ q′′}} ∪ {ψε,q′ | q ∈ Qε}. This formula combines
all the distinctions and holds for p because we know of the p

a−→ p′ transition. It cannot hold for q
because all paths from q must either pass through Qε or Qa. So it distinguishes p from q, contradicting
(p, q) ∈ RN .

• If N ∈ {BBsr,BB}, we also need to prove branching simulation on
τ−→ (by contradiction): Assume

p
τ−→ p′ and (p, q) ∈ RN . If (p′, q) ∈ RN , then we are finished. Otherwise, we can derive a contradiction

by constructing a similar branching conjunction formula as in the previous case. The difference is that
ψτ,q′,q′′ should not only distinguish p′ from q′′ but also from q′; this is possible because we can use
(p′, q) /∈ RN .

• If N = η, we need to prove η-simulation (by contradiction): Assume p
α−→ p′, (p, q) ∈ RN , but for all

q′ and q′′ with q ↠ q′
(α)−−→↠ q′′, (p, q′) /∈ RN or (p′, q′′) /∈ RN . Let

Qε = {q′ | q ↠ q′ ∧ (p, q′) /∈ RN}
Qa = {q′ | q ↠ q′ ∧ (p, q′) ∈ RN ∧ ∀q′′.q′

(α)−−→↠ q′′ −→ (p′, q′′) /∈ RN}

and proceed like for branching simulation, whether α = τ or not.
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• If N ∈ {DBsr,DB}, we need to prove delay simulation on
a−→ (by contradiction): Assume p

a−→ p′ and
(p, q) ∈ RN , but for all q′ with q ↠

a−→ q′, we have (p′, q′) /∈ RN . For each such q′, there is:

– . . . either a distinguishing formula φ ∈ ON with p′ ∈ JφK and q′ /∈ JφK. If φ is some immediate
conjunction

∧
Ψ, choose ψq′ ∈ Ψ such that q′ /∈ Jψq′K∧ (at least one such element of Ψ must

exist). Otherwise, set ψq′ := φ.

– . . . or a distinguishing formula φ ∈ ON with q′ ∈ JφK and p′ /∈ JφK. If φ is some immediate

conjunction
∧
Ψ, choose ψ̂ ∈ Ψ such that p /∈ Jψ̂K∧ (at least one such element of Ψ must exist)

and let ψq′ be its negation. Otherwise, set ψq′ := ¬φ.

In any case, ψq′ is a correct conjunct (of shape ψ in Definition 2.5). Then, ⟨ε⟩⟨a⟩
∧
{ψq′ | q ↠

a−→ q′} ∈
ON distinguishes p from q, contradicting (p, q) ∈ RN .

• If N = B, we need to prove weak simulation on
a−→. (The formula constructed in the case of delay

simulation includes an immediate conjunction and cannot be used.) Assume p
a−→ p′ and (p, q) ∈ RN ,

but for all q′ with q ↠
a−→↠ q′, we have (p′, q′) /∈ RN . For each such q′, there is:

– . . . either a distinguishing formula ⟨ε⟩χ ∈ ON with p′ ∈ J⟨ε⟩χK and q′ /∈ J⟨ε⟩χK. Set ψq′ := ⟨ε⟩χ.
– . . . or a distinguishing formula ⟨ε⟩χ ∈ ON with q′ ∈ J⟨ε⟩χK and p /∈ J⟨ε⟩χK. Set ψq′ := ¬⟨ε⟩χ.

In any case, ψq′ is a correct conjunct (of shape ψ in Definition 2.5). Then, ⟨ε⟩⟨a⟩⟨ε⟩
∧
{ψq′ | q ↠

a−→↠
q′} ∈ ON distinguishes p from q, contradicting (p, q) ∈ RN .

• If N = B, we need to prove delay or weak simulation on
τ−→ (by contradiction): Assume p

τ−→ p′ and
(p, q) ∈ RN , but for all q′ with q ↠ q′, we have (p′, q′) /∈ RN . (Note that this includes (p′, q) /∈ RN ,
as q ↠ q.) Similarly to the previous case, we construct ψq′ for every such q′. Then, ⟨ε⟩

∧
{ψq′ | q ↠

q′} ∈ ON distinguishes p from q, contradicting (p, q) ∈ RN .

For the other direction, assume there is an N -bisimulation relating p0 and q0. This means p0 ≈N q0,
where ≈N is the greatest symmetric N -simulation (according to Definitions 2.4, 3.5, 3.6, and 3.7). Assume
moreover that p0 ∈ JφK, for a formula φ ∈ ON . We will show that this implies q0 ∈ JφK by induction
over the structure of φ (and inner ψ) with arbitrary p0 and q0. (Because ≈N is symmetric, this will prove
p0 ∈ JφK ←→ q0 ∈ JφK for all φ ∈ ON , so we are then finished.)

• Case φ = ⟨ε⟩χ. That p ∈ J⟨ε⟩χK, implies there are p
τ−→n p′ such that p′ ∈ JχKε. To prove q ∈ J⟨ε⟩χK,

we will establish that there is q′ ∈ JχKε with q ↠ q′ by considering the cases for χ:

– Case χ = ⟨a⟩⟨ε⟩χ′. This implies there is p′′ with p′
a−→ p′′ and p′′ ∈ J⟨ε⟩χ′K. Due to branching,

delay, η-, or weak simulation, there are q′, q′′ with q ↠ q′
a−→↠ q′′ and p′′ ≈N q′′. With the

induction hypothesis, this implies q′′ ∈ J⟨ε⟩χ′K, and due to the HML semantics, q′ ∈ J⟨a⟩⟨ε⟩χ′Kε.

– Case χ = ⟨a⟩
∧
Ψ. (This formula only appears if N ∈ {BBsr,BB,DBsr,DB}.) This implies there

is p′′ with p′
a−→ p′′ and p′′ ∈ J

∧
ΨK. Due to branching or delay simulation, there are q′, q′′ with

q ↠ q′
a−→ q′′ and p′′ ≈N q′′. With the induction hypothesis, this implies q′′ ∈ J

∧
ΨK, and due to

the HML semantics, q′ ∈ J⟨a⟩
∧
ΨKε.

– Case χ =
∧
Ψ. We know that each ψ ∈ Ψ must be true for p′. If we can choose an appropriate

q′ with q ↠ q′ and p′ ≈N q′, the induction hypothesis implies each ψ of the form ¬⟨ε⟩χ′ or ⟨ε⟩χ′

to be true for q′ as well.

If there is ψ = ¬⟨τ⟩T ∈ Ψ (which implies N ∈ {BBsr,DBsr}), its truth ensures p′ ̸τ−→. We can
choose q′ to satisfy q ↠ q′ ̸τ−→ and p′ ≈N q′, thanks to ≈N respecting stability. q′ satisfies ¬⟨τ⟩T.
If, otherwise, there is ψ = (α)φ′ ∈ Ψ (which implies N ∈ {BBsr,BB, η}), there are p′′ ∈ Jφ′K and
p′

(α)−−→ p′′. Then we can choose q′ to satisfy q ↠ q′
(α)−−→↠ q′′ with p′ ≈N q′ and p′′ ≈N q′′, thanks

to ≈N being a branching or η-simulation. By induction hypothesis, φ′ must be true for q′′ as well
and thus (α)φ′ holds for this q′.
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If neither of the prior two conjuncts are present, we just take q′ = q if p = p′, or otherwise some
q′ with q ↠ q′ and p′ ≈N q′ that is implied by the simulation property of ≈N on p

τ−→n p′.

In every case, we have found a q′ ∈ J
∧
ΨK.

• Case φ =
∧
Ψ. (This formula only appears if N ∈ {BBsr,BB,DBsr,DB}.) We know that each ψ ∈ Ψ

must be true for p. By induction hypothesis, p ≈N q implies each ψ to be true for q as well. Thus
q ∈ J

∧
ΨK.

• Case ψ = ⟨ε⟩χ. The proof of the first case also addresses this case.

• Case ψ = ¬⟨ε⟩χ. Thanks to the proof of the first case and symmetry of ≈N , we know that if ⟨ε⟩χ were
to be true for q, it would also need to be true for p. The case implies that p /∈ J⟨ε⟩χK. By contraposition,
q /∈ J⟨ε⟩χK. This proves that ¬⟨ε⟩χ, in the context of a conjunction, does agree with q.

For the weaker abstractions of bisimilarity, that is, contrasimilarity with eC = (∞, 0,∞, 0, 0, 0,∞,∞)
and stable bisimilarity eSB = (∞, 0, 0,∞, 0,∞,∞,∞), our coordinate characterization matches the modal
logics used in Bisping and Montanari [19] (extended by some trivial T subterms). We can prove the adequacy
of the characterizations similarly to the stronger abstractions.

Definition 3.8 (Contrasimulation). A contrasimulation is a relationR where, for all (p, q) ∈ R with w⃗ ∈ Σ∗

and p
w⃗
↠ p′, there is a q′ with q

w⃗
↠ q′ and (q′, p′) ∈ R.

For the following proof, we introduce the abbreviation ⟨w⃗⟩φ, for φ ∈ OC, to mean:

• If w⃗ is the empty word λ, we set ⟨w⃗⟩φ := φ.

• If w⃗ = w⃗′τ , we set ⟨w⃗⟩φ := ⟨w⃗′⟩φ. (Note that φ always has the form ⟨ε⟩χ, as immediate conjunctions
are not allowed by OC.)

• If w⃗ = w⃗′a, we set ⟨w⃗⟩φ := ⟨w⃗′⟩⟨ε⟩⟨a⟩φ.

Lemma 3.4. There is a contrasimulation RC with (p0, q0) ∈ RC, precisely if p0 is contrasimulation-
preordered to q0, p0 ⪯C q0.

Proof. We prove that there is no formula φ ∈ OC distinguishing p0 from q0, if and only if there is a
contrasimulation SC with (p0, q0) ∈ SC.

Assume no φ ∈ OC distinguishes p0 from q0. Consider SC := {(p, q) | ∀φ ∈ OC. p ∈ JφK −→ q ∈ JφK}.
Clearly, (p0, q0) ∈ SC. We will show SC to satisfy the operational definition of contrasimulation.

We only need to prove contrasimulation on
w⃗
↠ (by contradiction): Assume p

w⃗
↠ p′ and (p, q) ∈ SC, but

for all q′ with q
w⃗
↠ q′, we have (q′, p′) /∈ SC. For each such q′, there is a distinguishing formula φ ∈ OC

with q′ ∈ JφK and p′ /∈ JφK. Set ψq′ := ¬φ. Formula ψq′ is a correct negative conjunct (of shape ψ in
Definition 2.5). Then, ⟨w⃗⟩⟨ε⟩

∧
{ψq′ | q

w⃗
↠ q′} ∈ OC distinguishes p from q, contradicting (p, q) ∈ SC.

For the other direction, assume there is a contrasimulation S such that (p0, q0) ∈ S. This means p0 ≾C q0,
where ≾C is the greatest contrasimulation. Assume moreover that p0 ∈ JφK, for a formula φ ∈ OC. We will
show that this implies q0 ∈ JφK by induction over the structure of φ with arbitrary p0 and q0.

Note that φ always can be written in the form ⟨w⃗⟩⟨ε⟩
∧
Ψ, for a suitable word w⃗ and set of negative

conjuncts Ψ = {¬⟨ε⟩φ′, . . .}. Then, p ∈ J⟨w⃗⟩⟨ε⟩
∧
ΨK implies there are p

w⃗
↠ p′ such that p′ ∈ J

∧
ΨKε. That

means that for all conjuncts ¬⟨ε⟩φ′ ∈ Ψ, we have p′ /∈ J⟨ε⟩φ′K.
Now let q′ be the process with q

w⃗
↠ q′ and q′ ≾C p′, which exists by the contrasimulation property. q′

must satisfy
∧
Ψ because otherwise, there is some conjunct ¬⟨ε⟩φ′ ∈ Ψ such that q′ /∈ J¬⟨ε⟩φ′K. That means

q′ ∈ J⟨ε⟩φ′K, and therefore p′ ∈ J⟨ε⟩φ′K by induction hypothesis. But the latter contradicts p′ /∈ J⟨ε⟩φ′K.

Definition 3.9 (Stable bisimulation). A relation R is a stable bisimulation if, for all (p, q) ∈ R with w⃗ ∈ Σ∗

and p
w⃗
↠ p′, there is a q′ with q

w⃗
↠ q′, and in case p′ ̸τ−→, moreover q′ ̸τ−→ and (p′, q′) ∈ R ∩R−1.

Lemma 3.5. There is a stable bisimulation RSB with (p0, q0) ∈ RSB, precisely if p0 is stable bisimulation-
preordered to q0, p0 ⪯SB q0.
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Proof. We prove that there is no formula φ ∈ OSB distinguishing p0 from q0, if and only if there is a stable
bisimulation RSB with (p0, q0) ∈ RSB.

Assume no φ ∈ OSB distinguishes p0 from q0. Consider RSB := {(p, q) | ∀φ ∈ OSB. p ∈ JφK −→ q ∈ JφK}.
Clearly, (p0, q0) ∈ RSB. We will show RSB to satisfy the operational definition of stable bisimulation by
induction over the formula φ.

• We need to prove trace inclusion on
w⃗
↠ (by contradiction): Assume p

w⃗
↠ p′ and (p, q) ∈ RSB, but

there is no q′ with q
w⃗
↠ q′. Then it is easy to see that ⟨w⃗⟩T is a formula that distinguishes p from

q, contradicting (p, q) ∈ RSB. (T =
∧
∅ formally is an immediate conjunction but is in OSB, as

expr(T) = 0.)

• We need to prove respect of stability (after a word step
w⃗
↠): Assume there is (p, q) ∈ RSB with

p
w⃗
↠ p′ ̸τ−→ but all q′ with q

w⃗
↠ q′ ̸τ−→ have (p′, q′) /∈ RSB ∩R−1

SB. For each such q′ with q ↠ q′ ̸τ−→, there
is:

– . . . either a distinguishing formula φ ∈ OSB with p′ ∈ JφK and q′ /∈ JφK. Set ψq′ := φ.

– . . . or a distinguishing formula φ ∈ OSB with q′ ∈ JφK and p′ /∈ JφK. Set ψq′ := ¬φ, with the
understanding that ¬¬φ is simplified to φ.

In any case, ψq′ is a correct conjunct (of shape ψ in Definition 2.5). Then, ⟨w⃗⟩⟨ε⟩
∧
{¬⟨τ⟩T} ∪ {ψq′ |

q
w⃗
↠ q′ ̸τ−→} ∈ OSB distinguishes p from q, contradicting (p, q) ∈ RSB.

For the other direction, assume there is a stable bisimulation relating p0 and q0. This means p0 ≾SB q0,
where ≾SB is the greatest stable bisimulation. Assume moreover that p0 ∈ JφK, for a formula φ ∈ OSB. We
will show that this implies q0 ∈ JφK by induction over the structure of φ (and inner ψ) with arbitrary p0
and q0.

• Case φ = ⟨ε⟩χ. p ∈ J⟨ε⟩χK implies there are p
τ−→n p′ such that p′ ∈ JχKε. To prove q ∈ J⟨ε⟩χK, we will

establish that there is q′ ∈ JχKε with q ↠ q′ by considering the cases for χ:

– Case χ = ⟨a⟩⟨ε⟩χ′. This implies there is p′′ with p′
a−→ p′′ and p′′ ∈ J⟨ε⟩χ′K. Due to stable

bisimulation, there are q′, q′′ with q ↠ q′
a−→ q′′ and p′′ ≈N q′′. With the induction hypothesis,

this implies q′′ ∈ J⟨ε⟩χ′K, and due to the HML semantics, q′ ∈ J⟨a⟩⟨ε⟩χ′Kε.

– Case χ =
∧
{¬⟨τ⟩T} ∪ Ψ. We know that each ψ ∈ Ψ must be true for p′, and that there exists

a q′ with p′ ≾SB q′ and q ↠ q′ ̸τ−→. The induction hypothesis implies that each ψ of the form
¬⟨ε⟩χ′ or ⟨ε⟩χ′ is true for q′ as well, so q′ ∈ J

∧
ΨKε.

• Case ψ = ⟨ε⟩χ. The proof of the first case also addresses this case.

• Case ψ = ¬⟨ε⟩χ. Thanks to the proof of the first case and symmetry of stable bisimulation on stable
states, we know that if ⟨ε⟩χ were to be true for q, it would also need to be true for p. The formula
implies that p /∈ J⟨ε⟩χK∧. By contraposition, q /∈ J⟨ε⟩χK∧. This proves that ¬⟨ε⟩χ, in the context of a
stable conjunction, does agree with q.

3.4. Linear-Time Notions

To define linear-time notions, the standard approach is to name special kinds of traces, paired or decorated
with additional information to encode enabled or disabled actions. Instead of going through the motions
of defining such objects, we argue that the modal characteirzations induced by our coordinates match the
right kinds of decorated traces.

For weak traces, Lemma 2.2 has established that the coordinate eT = (∞, 0, 0, 0, 0, 0, 0, 0) yields a
characterization. For the other notions, we will remain less fomal.
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Unstable readiness eR = (∞, 0, 1, 0, 0, 1, 1, 1).

φR ::= ⟨ε⟩⟨a⟩φR | ⟨ε⟩
∧
{ψR, ψR, . . .} | T

ψR ::= ¬⟨ε⟩⟨a⟩T | ¬⟨ε⟩⟨a⟩⟨ε⟩T | ⟨ε⟩⟨a⟩T | ⟨ε⟩⟨a⟩⟨ε⟩T | ⟨ε⟩T

Stable readiness eRs = (∞, 0, 0, 1, 0, 1, 1, 1).

φRs ::= ⟨ε⟩⟨a⟩φRs | ⟨ε⟩
∧
{¬⟨τ⟩, ψR, ψR, . . .} | T | ⟨ε⟩T

Unstable impossible futures eIF = (∞, 0, 1, 0, 0, 0,∞, 1).

φIF ::= ⟨ε⟩⟨a⟩φIF | ⟨ε⟩
∧
{ψIF, ψIF, . . .} | T

ψIF ::= ¬⟨ε⟩⟨a⟩φT | ¬⟨ε⟩T | ⟨ε⟩T

Stable impossible futures eIFs = (∞, 0, 0, 1, 0, 0,∞, 1).

φIFs ::= ⟨ε⟩⟨a⟩φIFs | ⟨ε⟩
∧
{¬⟨τ⟩, ψIF, ψIF, . . .} | T | ⟨ε⟩T

Unstable possible futures ePF = (∞, 0, 1, 0, 0,∞,∞, 1).

φPF ::= ⟨ε⟩⟨a⟩φPF | ⟨ε⟩
∧
{ψPF, ψPF, . . .} | T

ψPF ::= ¬⟨ε⟩⟨a⟩φT | ⟨ε⟩⟨a⟩φT | ¬⟨ε⟩T | ⟨ε⟩T

Figure 5: Grammars induced by coordinates for linear-time notions of equivalence.

Example 3.4 (Failure equivalence and preorder). The notion of unstable failure preorder (and equivalence)
is defined through eF = (∞, 0, 1, 0, 0, 0, 1, 1) and Definition 3.3 inducing OF, the language given by the
grammar:

OF : φF ::= ⟨ε⟩⟨a⟩φF | ⟨ε⟩
∧
{ψF, ψF, . . .} | T

ψF ::= ¬⟨ε⟩⟨a⟩T | ¬⟨ε⟩⟨a⟩⟨ε⟩T | ⟨ε⟩T | ¬⟨ε⟩T

The notion of stable failure preorder (and equivalence) is defined through eFs = (∞, 0, 0, 1, 0, 0, 1, 1) and
Definition 3.3 inducing OFs , the language given by the grammar:

OFs : φFs ::= ⟨ε⟩⟨a⟩φFs | ⟨ε⟩
∧
{¬⟨τ⟩, ψF, ψF, . . .} | T | ⟨ε⟩T

Intuitively, both grammars allow to observe a trace ending in one big conjunction of impossible actions.
For unstable failures, this is a standard conjunction; for stable failures, the conjunction contains a negated
τ -conjunct, enforcing stability. This mirrors exactly the standard definitions of weak (stable / unstable)
failures.

Some of the productions do not add distinctive power: In particular, the last one of φF and the last
three of ψF could be left out, and one would still obtain an equivalent modal characterization of failures.
They mostly appear out of consistence, as we assign T and ⟨ε⟩T expressiveness price 0. And this in turn is
necessary to have the coordinates allow productions like the last one of φFs , where the possibility to end a
trace observation lacking stabilization without this counting as (unstable) standard conjunction does make
an important difference.

There is not much benefit in discussing the details for each linear-time notion. For completeness, we list
the grammars for the notions of our weak spectrum in Figure 5. Also, we glimpse over ready similarity and
2-nested-similarity, which combine linear-time notions and similarity in unsurprising ways.
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4. A Game of Distinguishing Capabilities

This section introduces a game to find out how two states can be distinguished in the silent-step spectrum:
Attacker tries to implicitly construct a distinguishing formula, defender wants to prove that no such formula
exists. The twist is that we use an energy game where energies ensure the possible formulas to lie in sublogics
along the lines of the previous section.

4.1. Declining Energy Games

Equivalence problems of the strong linear-time–branching-time spectrum can be characterized as multi-
dimensional declining energy games with special min-operations between components as outlined in [9]. In
this subsection, we revisit the definitions we will need in this paper. For a more detailed presentation—in
particular on how to compute attacker and defender winning budgets on this class of games—we refer to
Bisping [9], Lemke [20], and Brihaye and Goeminne [21].

Definition 4.1 (Energy updates). The set of energy updates, Up, contains vectors (u1, . . . , u8) ∈ Up where
each component uk is a symbol of the form

• uk ∈ {−1, 0} (relative update), or
• uk = minD where D ⊆ {1, . . . , 8} and k ∈ D (minimum selection update).

Applying an update to an energy, upd(e, u), where e = (e1, . . . , e8) ∈ En∞ and u = (u1, . . . , u8) ∈ Up, yields
a new energy vector e′ where kth components e′k := ek + uk for uk ∈ Z and e′k := mind∈D ed for uk = minD.
Updates that would cause any component to become negative are undefined, i.e., upd is a partial function.

Example 4.1. upd((2, 0,∞, 0, 0, 0, 1, 1), (min{1,7}, 0,−1, 0, 0, 0, 0,−1)) equals (1, 0,∞, 0, 0, 0, 1, 0).

Definition 4.2 (Games). An 8-dimensional declining energy game G = (G,Gd, , w) is played on a directed
graph uniquely labeled by energy updates consisting of

• a set of game positions G, partitioned into

– defender positions Gd ⊆ G and
– attacker positions Ga := G \Gd,

• a relation of game moves ⊆ G×G, and
• a weight function for the moves w : ( )→ Up.

The notation g u g′ stands for g g′ and w(g, g′) = u.

In the games of [9], the attacker wins precisely if they can get the defender stuck without running out of
energy. The energy budgets that suffice for the attacker to win from a game position can be characterized
as follows:

Definition 4.3 (Winning budgets). The attacker winning budgetsWinGa per position of a game G are defined
inductively by the rules:

ga ∈ Ga ga
u g′ upd(e, u) ∈WinGa (g

′)

e ∈WinGa (ga)

gd ∈ Gd ∀u, g′. gd u g′ −→ upd(e, u) ∈WinGa (g
′)

e ∈WinGa (gd)

The defender wins precisely if the attacker does not win.

Remark 4.1. Often, winning budgets are rather defined through winning plays and strategies. Lemke [20]
formally shows the equivalence of both approaches for games with an energy-bound attacker.
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[p,Q]a [p,Qε]
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a
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(p, {q∈Qε | q ̸
τ−→})sd
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η
d

[p′, Q′]ηa

[p, q]∧a [q, {p′ | p↠ p′}]εa

[p, {q′ | q ↠ q′}]εa

[p′, Q′]a

Q↠ Qε

0
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(α)−−→ Q′ min{1,6},−1,−1, 0, 0, 0, 0, 0

−ê1

q ∈ Qε \Qα−ê2 − ê3

Figure 6: Schematic spectroscopy game G△ of Definitions 4.4 (the black part), 4.5 (with position (· · ·)sd), and 4.6 (with positions
(· · ·)sd, (· · ·)ηd and [· · ·]ηa ).

4.2. Delaying Observations in the Spectroscopy Energy Game

We begin with the part of the game that adds the concept of “delayed” attack positions to the “strong”
spectroscopy game of [9]. It matches the black part of the HMLsrbb-grammar of Definition 2.5. Figure 6 gives
a schematic overview of the game rules, where the game continues from the dashed nodes as from the initial
node. The colors differentiate the layers of following definitions and match the scheme of Definition 2.5 and
Figure 4.

Definition 4.4 (Spectroscopy delay game). For a system S = (P,Σ,−→), the spectroscopy delay energy
game GSε = (G,Gd, , w) consists of

• attacker positions [p,Q]a ∈ Ga,
• attacker delayed positions [p,Q]εa ∈ Ga,
• attacker conjunct positions [p, q]∧a ∈ Ga,
• defender conjunction positions (p,Q)d ∈ Gd,

where p, q ∈ P, Q ∈ 2P , and nine kinds of moves:

• delay [p,Q]a
0,0,0,0,0,0,0,0

[p,Q′]εa if Q↠ Q′,
• procrastination [p,Q]εa

0,0,0,0,0,0,0,0
[p′, Q]εa if p

τ−→ p′, p ̸= p′,
• observation [p,Q]εa

−1,0,0,0,0,0,0,0
[p′, Q′]a if p

a−→ p′, Q
a−→ Q′, a ̸= τ ,

• finishing [p,∅]a
0,0,0,0,0,0,0,0

(p,∅)d,
• immediate conj. [p,Q]a

0,0,0,0,−1,0,0,0
(p,Q)d if Q ̸= ∅,

• late conj. [p,Q]εa
0,0,0,0,0,0,0,0

(p,Q)d,
• conj. answer (p,Q)d

0,0,−1,0,0,0,0,0
[p, q]∧a if q ∈ Q,

• positive conjunct [p, q]∧a
min{1,6},0,0,0,0,0,0,0

[p,Q]εa if {q}↠ Q,
• negative conjunct [p, q]∧a

min{1,7},0,0,0,0,0,0,−1

[q,Q]εa if {p}↠ Q and p ̸= q.

Example 4.2. Starting at Pτ
e and Pτ

ℓ of Example 2.1 with energy (2, 0, 1, 0, 0, 0, 1, 1), the attacker can move
with [Pτ

e , {Pτ
ℓ }]a

delay observation
[Aτ

e , {Aτ
ℓ ,B

τ
ℓ }]a. (For readability, we label the moves by the names of their

rules.) This uses up ê1 energy leading to level (1, 0, 1, 0, 0, 0, 1, 1).
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[Aτ
e , {Aτ

ℓ ,B
τ
ℓ }]a

1, 0, 1, 0, 0, 0, 1, 1

⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩}

[Aτ
e , {Aτ

ℓ ,B
τ
ℓ }]εa

1, 0, 1, 0, 0, 0, 1, 1

∧
{¬⟨ε⟩⟨b⟩}

[0, {0}]a

(Aτ
e , {Aτ

ℓ ,B
τ
ℓ })d

1, 0, 1, 0, 0, 0, 1, 1

∧
{¬⟨ε⟩⟨b⟩}

[Aτ
e ,B

τ
ℓ ]

∧
a

1, 0, 0, 0, 0, 0, 1, 1

¬⟨ε⟩⟨b⟩T

[Aτ
e ,A

τ
ℓ ]

∧
a

1, 0, 0, 0, 0, 0, 1, 1

¬⟨ε⟩⟨b⟩T

[Bτ
ℓ , {Aτ

e }]εa
1, 0, 0, 0, 0, 0, 0, 0

⟨b⟩T
(Bτ

ℓ , {Aτ
e })d

1, 0, 1, 0, 0, 1, 0, 0
1, 0, 2, 0, 0, 0, 1, 2

[Bτ
ℓ ,A

τ
e ]

∧
a

1, 0, 0, 0, 0, 1, 0, 0
1, 0, 1, 0, 0, 0, 1, 2

[Aτ
ℓ , {Aτ

e }]εa
1, 0, 0, 0, 0, 0, 0, 0

⟨b⟩T
(Aτ

ℓ , {Aτ
e })d

1, 0, 1, 0, 0, 1, 0, 0
1, 0, 2, 0, 0, 0, 1, 2

[Aτ
ℓ ,A

τ
e ]

∧
a

1, 0, 0, 0, 0, 1, 0, 0
1, 0, 1, 0, 0, 0, 1, 2

[0,∅]a

0, 0, 0, 0, 0, 0, 0, 0

T

[0,∅]εa

0, 0, 0, 0, 0, 0, 0, 0

T

(0,∅)d

0, 0, 0, 0, 0, 0, 0, 0

T

−ê1

−ê5

−ê3 −ê3

min{1,7}, ...,−1 min{1,7}, ...,−1

min{1,6} min{1,6}

−ê3 min{1,6}

min{1,7}, ...,−1

−ê3min{1,6}

min{1,7}, ...,−1

−ê1

Figure 7: Spectroscopy delay game Gε from [Aτ
e , {Aτ

ℓ ,B
τ
ℓ }]a for Example 4.2. Each position names minimal attacker-winning

budgets (due to the thick arrows) and corresponding distinguishing formulas (pink). Zeroes and 0-updates are omitted for
readability. Also, the game graph under defender-won reflexive position [0, {0}]a (dashed in blue) is omitted.

Figure 7 shows how the attacker can win from there. The attacker chooses a delay move and yields
to the defender (Aτ

e , {Aτ
ℓ ,B

τ
ℓ })d. If the defender selects Bτ

ℓ , bringing the energy to (1, 0, 0, 0, 0, 0, 1, 1), the
attacker wins by [Aτ

e ,B
τ
ℓ ]

∧
a

negative conjunct
[Bτ

ℓ ,A
τ
e ]

ε
a

observation finishing
(0,∅)d ̸ . For the defender choosing

Aτ
ℓ , a similar attack works due to [Aτ

ℓ ,A
τ
e ]

ε
a

procrastination
[Bτ

ℓ ,A
τ
e ]

ε
a. Thus, the attacker wins the game.

The tree of winning moves corresponds to formula φτ = ⟨ε⟩⟨op⟩⟨ε⟩
∧
{¬⟨ε⟩⟨b⟩T} and budget of Exam-

ple 3.1. This is no coincidence, but rather our core design principle for game moves. As we will prove in
Section 5, attacker’s winning moves match distinguishing HMLsrbb-formulas and their prices.

Note that the attacker would not win if any component of the starting energy vector were lower. For
example, eT = (∞, 0, 0, 0, 0, 0, 0, 0) /∈Wina([P

τ
e , {Pτ

ℓ }]a) corresponds to weak trace preorder, Pτ
e ⪯T Pτ

ℓ .

4.3. Covering Stable Failures and Conjunctions

In order to cover “stable” and “stability-respecting” equivalences, we must separately count stable con-
junctions.

Definition 4.5 (Spectroscopy stability game). The stability game GSs extends the delay game GSε of Defi-
nition 4.4 by

• defender stable conjunction positions (p,Q)sd ∈ Gd,

where p ∈ P, Q ∈ 2P , and three kinds of moves:

• stable conj. [p,Q]εa
0,0,0,0,0,0,0,0

(p,Q′)sd if Q′ = {q ∈ Q | q ̸τ−→}, p ̸τ−→,
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• conj. stable answer (p,Q)sd
0,0,0,−1,0,0,0,0

[p, q]∧a if q ∈ Q,
• stable finishing (p,∅)sd

0,0,0,−1,0,0,0,−1
(p,∅)d.

In principle, we add a move to enter a defender stable conjunction position and a move to leave it, similar
to the defender conjunction positions in Definition 4.4.

Example 4.3. Note that these new rules allow no new (incomparable) wins for the attacker in Example 4.2.
Therefore, stable bisimulation is another finest preorder (and equivalence) for the example processes because
eSB /∈Wina([P

τ
e , {Pτ

ℓ }]a) for Gs.

4.4. Extending to Branching Bisimulation

One last kind of distinctions is necessary to characterize branching bisimilarity, the strongest common
abstraction of bisimilarity for systems with silent steps: its characteristic branching conjunctions.

Definition 4.6 (Weak spectroscopy game). The weak spectroscopy energy game GS△ extends Definition 4.5
by

• defender branching positions (p, α, p′, Q,Qα)
η
d ∈ Gd,

• attacker branching positions [p,Q]ηa ∈ Ga,

where p, p′ ∈ P and Q,Qα ∈ 2P as well as α ∈ Σ, and four kinds of moves:

• branching conj. [p,Q]εa
0,0,0,0,0,0,0,0

(p, α, p′, Q \Qα, Qα)
η
d if p

(α)−−→ p′, Qα ⊆ Q,
• branch. answer (p, α, p′, Q,Qα)

η
d

0,−1,−1,0,0,0,0,0
[p, q]∧a if q ∈ Q,

• branch. observation (p, α, p′, Q,Qα)
η
d

min{1,6},−1,−1,0,0,0,0,0

[p′, Q′]ηa with Qα
(α)−−→ Q′,

• branch. accounting [p,Q]ηa
−1,0,0,0,0,0,0,0

[p,Q]a.

Intuitively, the attacker picks a step p
α−→ p′ and some Qα ⊆ Q that they claim to be unable to

immediately simulate this step. For the remaining Q \ Qα, the attacker claims that these can be dealt
with by other (possibly negative) delayed observations. The defender then chooses which claim to counter.

Example 4.4. Consider the CCS processes a + τ.b + b and a + τ.b. The first process explicitly allows
action b to happen before deciding against a. To weak bisimilarity, for instance, this is transparent. To
more branching-aware notions, it constitutes a difference.

The two processes can be distinguished as follows in the weak spectroscopy game with energy budget
(1, 1, 1, 0, 0, 1, 0, 0): First, the attacker enters a defender branching position [a + τ.b + b, {a + τ.b}]a

delay

[a + τ.b + b, {a + τ.b, b}]εa
branching conjunction

(a + τ.b + b, b, 0, {b}, {a + τ.b})ηd. The defender can then pick
between two losing options:

• ( · · · )ηd
branching answer

[a+τ.b+b, b]∧a : Attacker responds [ · · · ]∧a
positive conjunct a-observation finishing

(0,∅)d,
which corresponds to formula ⟨ε⟩⟨a⟩T.

• ( · · · )ηd
branching observation

[0, {}]ηa: Attacker replies [ · · · ]ηa
branching accounting finishing

(0,∅)d, which corre-
sponds to the (b)T-observation in the context of a branching conjunction.

Taken together, the attacker wins this game constellation with a strategy that corresponds to the formula
⟨ε⟩

∧
{(b), ⟨ε⟩⟨a⟩}.

The formula disproves η-simulation preorder and thus branching bisimilarity. However, the two processes
are (stability-respecting) delay-bisimilar as there are no delay bisimulation formulas to distinguish them.

5. Correctness

We now state in what sense winning energy levels and equivalences coincide in the context of a transition
system S = (P,Σ,−→).
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Theorem 5.1 (Correctness). For all e ∈ En∞, p ∈ P, Q ∈ 2P , the following are equivalent:6

1. There exists a formula φ ∈ HMLsrbb with price expr(φ) ≤ e that distinguishes p from Q.

2. Attacker wins GS△ from [p,Q]a with e (that is, e ∈WinG
S
△

a ([p,Q]a)).

With Definition 3.4, this means that, for a notion of equivalence N with coordinate eN in Figure 4,
p ⪯N q precisely if the defender wins, that is, if eN /∈Wina([p, {q}]a).

The proof of the theorem is given through the following three lemmas. The direction from (1) to (2) is
covered by Lemma 5.1 when combined with the upward-closedness of attacker winning budgets. From (2)
to (1), the link is established through strategy formulas by Lemmas 5.2 and 5.3.

5.1. Distinguishing Formulas Imply Attacker-Winning Budgets

Lemma 5.1. If φ ∈ HMLsrbb distinguishes p from Q, then expr(φ) ∈Wina([p,Q]a).
7

Proof. If Q = ∅, the lemma is very easy to prove. So let us assume that Q ̸= ∅ for the rest. To get an
inductive property, we actually prove the following property:

1. If φ ∈ HMLsrbb distinguishes p from Q ̸= ∅, then expr(φ) ∈Wina([p,Q]a);

2. If χ distinguishes p from Q ̸= ∅ and Q is closed under ↠ (that is Q ↠ Q), then exprε(χ) ∈
Wina([p,Q]εa);

3. If ψ distinguishes p from q, then expr∧(ψ) ∈Wina([p, q]
∧
a ).

4. If
∧
Ψ distinguishes p from Q ̸= ∅, then exprε(

∧
Ψ) ∈Wina((p,Q)d);

5. If
∧
{¬⟨τ⟩T}∪Ψ distinguishes p from Q ̸= ∅ and the processes in Q are stable, then exprε(

∧
{¬⟨τ⟩T}∪

Ψ) ∈Wina((p,Q)sd);

6. If
∧
{(α)φ′} ∪ Ψ distinguishes p from Q, then, for any p

(α)−−→ p′ ∈ Jφ′K and Qα = Q \ J⟨α⟩φ′K,
exprε(

∧
{(α)φ′} ∪Ψ) ∈Wina((p, α, p

′, Q \Qα, Qα)
η
d).

We prove this by mutual induction over the structure of φ, χ, and ψ.

1. Assume φ distinguishes p from Q ̸= ∅.

φ = ⟨ε⟩χ: That means that there exists p ↠ p′ ∈ JχK and Q′ ∩ JχK = ∅ for Q ↠ Q′. Therefore,
χ distinguishes p′ from Q′ and Q′ ↠ Q′. By induction hypothesis we conclude that exprε(χ) ∈
Wina([p

′, Q′]εa).

There are moves [p,Q]a
delay

[p,Q′]εa
procrastination· · · [p′, Q′]εa. Using Definition 4.3 over these moves,

we can conclude that exprε(χ) ∈Wina([p,Q]a). We get the result because expr(φ) = exprε(χ).

φ =
∧
Ψ: There is the move [p,Q]a

immediate conj.
(p,Q)d. By induction hypothesis we conclude that

exprε(
∧
Ψ) ∈ Wina((p,Q)d). Using Definition 4.3 we immediately get that expr(φ) = exprε(φ) +

ê5 ∈Wina([p,Q]a).

2. Assume χ distinguishes p from Q ̸= ∅ (and Q↠ Q).

χ = ⟨a⟩φ′: That means that there exists p′ ∈ Jφ′K such that p
a−→ p′. On the other hand, Q′∩Jφ′K = ∅,

where Q
a−→ Q′, and therefore φ′ distinguishes p′ from Q′.

Now there is the move [p,Q]a
observation [p′, Q′]a, By induction hypothesis we conclude that

expr(φ′) ∈ Wina([p
′, Q′]a). Because we can calculate exprε(⟨a⟩φ′) := ê1 + expr(φ′), we know

upd(exprε(χ),−ê1) = expr(φ′). With Definition 4.3, we get exprε(χ) ∈Wina([p,Q]a).

6 theorem Silent_Step_Spectroscopy.weak_spectroscopy_game.spectroscopy_game_correctness
7 lemma Distinction_Implies_Winning_Budgets.weak_spectroscopy_game.distinction_implies_winning_budgets
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χ =
∧
Ψ: There is the move [p,Q]εa

late conj.
(p,Q)d; we use the proof for (p,Q)d that follows in (4)

and Definition 4.3 to then get exprε(χ) ∈Wina([p,Q]a).

χ =
∧
{¬⟨τ⟩T} ∪Ψ: There is the move [p,Q]εa

late stable conj.
(p,Q′)sd, where Q

′ = {q ∈ Q | q ̸τ−→}. If Q′

is not empty, we argue as in the previous case using (5).

If Q′ is empty, there is the move (p,Q′)sd = (p,∅)sd
stable finishing

(p,∅)d. The latter position is
stuck, so Wina((p,∅)d) = En∞ and by Definition 4.3, e ∈ Wina((p,∅)sd) for all e ≥ ê4. Because
exprε(χ) ≥ exprε(

∧
{¬⟨τ⟩T}) = ê4, we get the result.

χ =
∧
{(α)φ′} ∪Ψ: Note that there must exist p

(α)−−→ p′ ∈ Jφ′K (otherwise p ̸∈ J(α)φ′K ⊇ JχK, so χ
would not distinguish p from anything). Pick such a p′, and setQα = Q\J⟨α⟩φ′K. Then there is the
move [p,Q]εa

branching conj.
(p, α, p′, Q \Qα, Qα)

η
d; so we can use the proof for (p, α, p′, Q \Qα, Qα)

η
d

that follows in (6) and Definition 4.3 to get exprε(χ) ∈Wina([p,Q]εa).

3. Assume ψ distinguishes p from q.

ψ = ⟨ε⟩χ: That means that there exists p ↠ p′ ∈ JχK and Q′ ∩ JχK = ∅ for {q} ↠ Q′. Therefore,
χ distinguishes p′ from Q′ and Q′ ↠ Q′. By induction hypothesis we conclude that exprε(χ) ∈
Wina([p

′, Q′]εa).

Now there is a move sequence [p, q]∧a
positive conjunct

[p,Q′]εa
procrastination· · · [p′, Q′]εa. Using Defini-

tion 4.3 over the procrastination moves, we can conclude expr(⟨ε⟩χ) = exprε(χ) ∈ Wina([p,Q
′]εa).

Calculation shows upd(expr∧(ψ), (min{1,6}, 0, 0, 0, 0, 0, 0, 0)) ≥ exprε(χ), and this allows to apply
Definition 4.3 and get the result.

ψ = ¬⟨ε⟩χ: That means that there exists q ↠ q′ ∈ JχK and P ′ ∩ JχK = ∅ for {p} ↠ P ′. Therefore,
χ distinguishes q′ from P ′ and P ′ ↠ P ′. By induction hypothesis we conclude that exprε(χ) ∈
Wina([q

′, P ′]εa). Again, we apply Definition 4.3 to obtain the result, using a similar calculation as
in the previous case to show upd(expr∧(ψ), (min{1,7}, 0, 0, 0, 0, 0, 0,−1)) ≥ exprε(χ).

4. Assume
∧
Ψ distinguishes p from Q.

We can find, for every q ∈ Q, some ψq ∈ Ψ such that q /∈ JψqK (so Ψ ̸= ∅). Choose one such covering
of ψqs. Let Ψ

′ := {ψq | q ∈ Q} ⊆ Ψ. Each ψq either has the form ⟨ε⟩χq or ¬⟨ε⟩χq. It must be the case
that p ∈ J

∧
q∈QψqK and Q ∩ J

∧
q∈QψqK = ∅.

Now there are the moves (p,Q)d
conj. answer

[p, q]∧a for all q ∈ Q. We have to show that e0 := exprε(χ) =
ê3 + sup{expr∧(ψ) | ψ ∈ Ψ} ∈ Wina((p,Q)d). As Wina((p,Q)d) is upwards-closed, we can restrict the
supremum to Ψ′ instead of Ψ, so it suffices to prove that sup{expr∧(ψ)+ ê3 | ψ ∈ Ψ′} ∈Wina((p,Q)d).
Now, to show this using Definition 4.3, we have to quantify over all game moves from (p,Q)d, i.e. over all
conjunction answers, which lead to the positions [p, q]∧a for q ∈ Q. We have upd(e0,−ê3) ≥ expr∧(ψq),
and by induction hypothesis know expr∧(ψq) ∈ Wina([p, q]

∧
a ). Applying Definition 4.3 immediately

leads to the desired result.

5. Assume
∧
{¬⟨τ⟩T} ∪Ψ distinguishes p from Q ̸= ∅, where p and the processes in Q are stable.

We choose ψq (for every q ∈ Q) and Ψ′ as in the previous case.

Now there are the moves (p,Q)sd
conj. s-answer

[p, q]∧a for all q ∈ Q. We have to show that exprε(χ) =
ê4 + sup{expr∧(ψ) | ψ ∈ Ψ} ∈Wina((p,Q)sd). This proceeds exactly as in the previous case.

6. Assume
∧
{(α)φ′} ∪Ψ distinguishes p from Q, p

(α)−−→ p′ ∈ Jφ′K and Qα = Q \ J⟨α⟩φ′K.

There are the moves (p, α, p′, Q \Qα, Qα)
η
d

br. answer [p, q]∧a for all q ∈ Q \ Qα. Additionally, there
are the moves (p, α, p′, Q \Qα, Qα)

η
d

br. observation [p′, Q′]ηa
br. accounting

[p′, Q′]a for Qα
(α)−−→ Q′, and φ′

distinguishes p′ from Q′.

We have to show that e0 := exprε(χ) = ê2 + ê3 + sup{expr∧(⟨ε⟩(α)φ′)} ∪ {expr∧(ψ) | ψ ∈ Ψ} ∈
Wina((p, α, p

′, Q \Qα, Qα)
η
d). For the branching answer moves, this proceeds exactly as in the previous

cases. For the branching observation move, we have to show that e2 := upd(upd(e0, (min{1,6},−1,−1, 0,
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0, 0, 0, 0)),−ê1) ∈ Wina([p
′, Q′]a). We know e2 ≥ expr(φ′). Moreover, we get expr(φ′) ∈ Wina([p

′, Q′]a)
by induction hypothesis (or, trivially, if Q′ = ∅). This suffices to apply Definition 4.3 and get the
result.

5.2. Winning Attacks Imply Cheap Distinguishing Formulas

For this direction of the proof, we make explicit what formulas attacker’s strategies correspond to.

Definition 5.1 (Strategy formulas). The set of attacker strategy formulas Strat for a G△-position with
given energy level e is derived from the sets of winning budgets, Wina, inductively according to the rules in
Figure 8.

As an example how to read the rules of Figure 8, procr states that if there is a move [p,Q]εa
u [p′, Q]εa

(based on Definition 4.4, this must be a procrastination move), and the strategy formulas of the latter
position contain χ, then also the strategy formulas of the former position contain χ.

Lemma 5.2. If e ∈Wina([p,Q]a), then there is φ ∈ Strat([p,Q]a, e) with expr(φ) ≤ e.8

Proof. We prove a more detailed result, namely:

1. If e ∈Wina([p,Q]a), then there is φ ∈ Strat([p,Q]a, e) with price expr(φ) ≤ e;

2. If e ∈Wina([p,Q]εa), then there is χ ∈ Strat([p,Q]εa, e) with exprε(χ) ≤ e;

3. If e ∈Wina([p, q]
∧
a ), then there is ψ ∈ Strat([p, q]∧a , e) with expr∧(ψ) ≤ e.

4. If e ∈Wina((p,Q)d), then there is
∧
Ψ ∈ Strat((p,Q)d) with exprε(

∧
Ψ) ≤ e;

5. If e ∈Wina((p,Q)sd), then there is
∧
{¬⟨τ⟩T}∪Ψ ∈ Strat((p,Q)sd) with price exprε(

∧
{¬⟨τ⟩T}∪Ψ) ≤ e;

6. If e ∈ Wina((p, α, p
′, Q \Qα, Qα)

η
d), then there is

∧
{(α)φ′} ∪ Ψ ∈ Strat((p, α, p′, Q \Qα, Qα)

η
d) with

price exprε(
∧
{(α)φ′} ∪Ψ) ≤ e.

We induct over game positions g and energies e according to the inductive Definition 4.3. We distinguish
cases depending on the kind of position.

1. Assume e ∈Wina([p,Q]a). This must be due to one of the following moves:

Delay move [p,Q]a
0 [p,Qε]

ε
a: We know that e = upd(e,0) ∈ Wina([p,Qε]

ε
a), so by induction hy-

pothesis we know that there exists χ ∈ Strat([p,Qε]
ε
a, e) and exprε(χ) ≤ e. But then ⟨ε⟩χ ∈

Strat([p,Q]a, e) by rule (delay) of Definition 5.1 and expr(⟨ε⟩χ) = exprε(χ) ≤ e.
Immediate conj. move [p,Q]a

−ê5 (p,Q)d: It must hold that e′ = upd(e,−ê5) ∈ Wina((p,Q)d), so
by induction hypothesis we know that there exists a conjunction

∧
Ψ ∈ Strat((p,Q)d, e

′) and
exprε(

∧
Ψ) ≤ e′. But then,

∧
Ψ ∈ Strat([p,Q]a, e) by rule (immediate conj) of Definition 5.1, and

expr(
∧
Ψ) ≤ e.

2. Assume e ∈Wina([p,Q]εa). This must be due to one of the following moves:

Procrastination move [p,Q]εa
0 [p′, Q]εa: We know upd(e,0) = e ∈ Wina([p

′, Q]εa). By induction
hypothesis, there is χ ∈ Strat([p′, Q]εa, e) and exprε(χ) ≤ e; therefore, by rule (procr) of Defini-
tion 5.1, χ ∈ Strat([p,Q]εa, e).

Late (unstable) conjunction move [p,Q]εa
0 (p,Q)d: It must be the case that e ∈ Wina((p,Q)d).

By induction hypothesis there is
∧
Ψ ∈ Strat((p,Q)d, e) and exprε(

∧
Ψ) ≤ e; therefore, by rule

(late conj) of Definition 5.1,
∧
Ψ ∈ Strat([p,Q]εa, e).

8 lemma Strategy_Formulas.weak_spectroscopy_game.winning_budget_implies_strategy_formula
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delay
[p,Q]a

u [p,Q′]εa e′ = upd(e, u)∈Wina([p,Q
′]εa) χ ∈ Strat([p,Q′]εa, e

′)

⟨ε⟩χ ∈ Strat([p,Q]a, e)

procr
[p,Q]εa

u [p′, Q]εa e′ = upd(e, u)∈Wina([p
′, Q]εa) χ ∈ Strat([p′, Q]εa, e

′)

χ ∈ Strat([p,Q]εa, e)

observation

[p,Q]εa
u [p′, Q′]a

e′ = upd(e, u)∈Wina([p
′, Q′]a) p

a−→ p′ Q
a−→ Q′ φ ∈ Strat([p′, Q′]a, e

′)

⟨a⟩φ ∈ Strat([p,Q]εa, e)

immediate conj
[p,Q]a

u (p,Q)d e′=upd(e, u)∈Wina((p,Q)d) φ ∈ Strat((p,Q)d, e
′)

φ ∈ Strat([p,Q]a, e)

late conj
[p,Q]εa

u (p,Q)d e′=upd(e, u)∈Wina((p,Q)d) χ ∈ Strat((p,Q)d, e
′)

χ ∈ Strat([p,Q]εa, e)

conj
(p,Q)d

uq
[p, q]∧a ∀q ∈ Q. eq=upd(e, uq)∈Wina([p, q]

∧
a ) ∧ ψq ∈ Strat([p, q]∧a , eq)∧

{ψq | q ∈ Q} ∈ Strat((p,Q)d, e)

pos
[p, q]∧a

u [p,Q′]εa e′ = upd(e, u) ∈Wina([p,Q
′]εa) χ ∈ Strat([p,Q′]εa, e

′)

⟨ε⟩χ ∈ Strat([p, q]∧a , e)

neg
[p, q]∧a

u [q, P ′]εa e′ = upd(e, u) ∈Wina([q, P
′]εa) χ ∈ Strat([q, P ′]εa, e

′)

¬⟨ε⟩χ ∈ Strat([p, q]∧a , e)

stable
[p,Q]εa

u (p,Q′)sd e′=upd(e, u)∈Wina((p,Q
′)sd) χ ∈ Strat((p,Q′)sd, e

′)

χ ∈ Strat([p,Q]εa, e)

stable conj
(p,Q)sd

uq
[p, q]∧a Q ̸= ∅ ∀q ∈ Q. eq=upd(e, uq)∈Wina([p, q]

∧
a ) ∧ ψq ∈ Strat([p, q]∧a , eq)∧

({¬⟨τ⟩T} ∪ {ψq | q ∈ Q}) ∈ Strat((p,Q)sd, e)

stable finish
(p,∅)sd

u (p,∅)d e′=upd(e, u)∈Wina((p,∅)d)∧
{¬⟨τ⟩T} ∈ Strat((p,Q)sd, e)

branch

[p,Q]εa
u (p, α, p′, Q′, Qα)

η

d

e′=upd(e, u) ∈Wina((p, α, p
′, Q′, Qα)

η

d) χ ∈ Strat((p, α, p′, Q′, Qα)
η

d, e
′)

χ ∈ Strat([p,Q]εa, e)

branch conj

gd = (p, α, p′, Q,Qα)
η

d
uα [p′, Q′]ηa

u′
α [p′, Q′]a

eα=upd(upd(e, uα), u
′
α) ∈Wina([p

′, Q′]a) φα ∈ Strat([p′, Q′]a, eα)
∀q ∈ Q. gd

uq
[p, q]∧a ∧ eq=upd(e, uq)∈Wina([p, q]

∧
a ) ∧ ψq∈ Strat([p, q]∧a , eq)∧

({(α)φα} ∪ {ψq | q ∈ Q}) ∈ Strat((p, α, p′, Q,Qα)
η

d, e)

Figure 8: Strategy formula constructions for Definition 5.1.
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Stable conjunction move [p,Q]εa
0 (p, {q∈Q |q ̸τ−→})sd: It must hold that p is stable and that e ∈

Wina((p, {q ∈ Q | q ̸τ−→})d). By induction hypothesis there is some formula
∧
{¬⟨τ⟩T} ∪ Ψ ∈

Strat((p, {q ∈ Q | q ̸τ−→})sd) and exprε(
∧
{¬⟨τ⟩T} ∪Ψ) ≤ e; thus, by rule (stable) of Definition 5.1,∧

{¬⟨τ⟩T} ∪Ψ ∈ Strat([p,Q]εa, e).

Branch. conjunction move [p,Q]εa
0 (p, α, p′, Q \Qα, Qα)d: It must hold that e ∈ Wina((p, α, p

′,
Q \ Qα, Qα)d). By induction hypothesis there is a formula

∧
{(α)φ′} ∪ Ψ ∈ Strat((p, α, p′, Q \

Qα, Qα)d) and exprε(
∧
{(α)φ′}∪Ψ) ≤ e; therefore, by rule (branch) of Definition 5.1,

∧
{(α)φ′}∪

Ψ ∈ Strat([p,Q]εa).

3. Assume e ∈Wina([p, q]
∧
a ). This must be due to one of the following moves:

Positive conjunct [p, q]∧a
min{1,6},0,0,0,0,0,0,0

[p, {q′ | q ↠ q′}]εa: It must hold that e′ := upd(e, (min{1,6},
0, 0, 0, 0, 0, 0, 0)) ∈ Wina([p, {q′ | q ↠ q′}]εa). By induction hypothesis there is some formula
χ ∈ Strat([p, {q′ | q ↠ q′}]εa, e′) and exprε(χ) ≤ e′; therefore, by rule (pos) of Definition 5.1,
⟨ε⟩χ ∈ Strat([p, q]∧a , e).

Negative conjunct [p, q]∧a
min{1,7},0,0,0,0,0,0,−1

[q, {p′ | p↠ p′}]εa: It holds that e′ := upd(e, (min{1,7},
0, 0, 0, 0, 0, 0,−1)) ∈ Wina([q, {p′ | p ↠ p′}]εa). By induction hypothesis there is some formula
χ ∈ Strat([q, {p′ | p ↠ p′}]εa, e′) and exprε(χ) ≤ e′; therefore, by rule (neg) of Definition 5.1,
¬⟨ε⟩χ ∈ Strat([p, q]∧a , e).

4. Assume e ∈ Wina((p,Q)d). For each move (p,Q)d
−ê3 [p, q]∧a , it must hold that e′ := upd(e,−ê3) ∈

Wina([p, q]
∧
a ), so by induction hypothesis there are ψq ∈ Strat([p, q]∧a ) with expr∧(ψq) ≤ e′. Therefore,

by rule (conj) of Definition 5.1,
∧

q∈Qψq ∈ Strat((p,Q)d, e), and exprε(
∧

q∈Qψq) = ê3+sup{expr∧(ψq) |
q ∈ Q} ≤ e.

5. Assume e ∈Wina((p,Q)sd). If Q ̸= ∅, we can argue similar to the previous case.

If Q = ∅, the only move is (p,Q)sd = (p,∅)sd
−ê4−ê8 (p,∅)d. It must be the case that upd(e,−ê4−ê8) ≥

0, or equivalently, e ≥ ê4 + ê8. But then we have exprε(
∧
{¬⟨τ⟩T}) = ê4 + ê8 ≤ e as required.

6. Assume e ∈ Wina((p, α, p
′, Q \Qα, Qα)

η
d). Then there are moves (p, α, p′, Q \Qα, Qα)

η
d

−ê2−ê3 [p, q]∧a
for every q ∈ Q \ Qα; it must be the case that e′ := upd(e,−ê2 − ê3) ∈ Wina([p, q]

∧
a ), so by

induction hypothesis there are formulas ψq ∈ Strat([p, q]∧a ) with expr∧(ψq) ≤ e′. Also, for the
moves (p,α,p′,Q \Qα,Qα)

η
d

min{1,6},−1,−1,0,0,0,0,0

[p′, Q′]ηa
−ê1 [p′, Q′]a, it must be the case that e′′ :=

upd(upd(e, (min{1,6},−1,−1, 0, 0, 0, 0, 0)),−ê1) ∈ Wina([p
′, Q′]a), so by induction hypothesis there is

some φ′ ∈ Strat([p′, Q′]a, e
′′) with expr(φ′) ≤ e′′.

Hence, by rule (branch conj) of Definition 5.1,
∧
{(α)φ′} ∪ {ψq | q ∈ Q \ Qα} ∈ Strat((p, α, p′,

Q \Qα, Qα)
η
d, e) and exprε(

∧
{(α)φ′} ∪ {ψq | q ∈ Q \Qα}) ≤ e.

Lemma 5.3. If φ ∈ Strat([p,Q]a, e), then φ distinguishes p from Q.9

Proof. Again, to get an inductive property, we actually prove the following:

1. If φ ∈ Strat([p,Q]a, e), then φ distinguishes p from Q;

2. If χ ∈ Strat([p,Q]εa, e) and Q↠ Q, then ⟨ε⟩χ distinguishes p from Q;

3. If ψ ∈ Strat([p, q]∧a , e), then ψ distinguishes p from {q}.

4. If
∧
Ψ ∈ Strat((p,Q)d, e), then

∧
Ψ distinguishes p from Q;

9 lemma Strategy_Formulas.weak_spectroscopy_game.strategy_formulas_distinguish

25

https://equivio.github.io/silent-step-spectroscopy/AFP/Weak_Spectroscopy/Strategy_Formulas.html#Strategy_Formulas.weak_spectroscopy_game.strategy_formulas_distinguish|fact


5. If
∧
{¬⟨τ⟩T} ∪Ψ ∈ Strat((p,Q)sd, e) and p is stable, then the stable conjunction

∧
{¬⟨τ⟩T} ∪Ψ distin-

guishes p from Q;

6. If
∧
{(α)φ′}∪Ψ ∈ Strat((p, α, p′, Q\Qα, Qα)

η
d, e), p

(α)−−→ p′ and Qα ⊆ Q, then the branching conjunction∧
{(α)φ′} ∪Ψ distinguishes p from Q.

We prove the result by induction over the derivation of · · · ∈ Strat(g, e) according to Definition 5.1.

1. Assume φ ∈ Strat([p,Q]a, e).

Due to rule (delay) in Definition 5.1: Then φ = ⟨ε⟩χ and for Q′ with Q ↠ Q′ we have χ ∈
Strat([p,Q′]εa, e). By induction hypothesis, ⟨ε⟩χ distinguishes p from Q′, but then it also distin-
guishes p from Q ⊆ Q′.

Due to rule (immediate conj) in Definition 5.1: The rule has premise [p,Q]a
u (p,Q)d, but

this move can be a finishing move [p,∅]a
0 (p,∅)d or an immediate conjunction move [p,Q]a

−ê5

(p,Q)d with Q ̸= ∅. In either case, we have that φ =
∧
Ψ ∈ Strat((p,Q)d, upd(e, u)). By induction

hypothesis,
∧
Ψ distinguishes p from Q, and this is exactly what we need to prove about φ =

∧
Ψ.

2. Assume χ ∈ Strat([p,Q]εa, e) and Q↠ Q.

Due to rule (procr) in Definition 5.1: Then there is a step p↠ p′ such that χ ∈ Strat([p′, Q]εa, e).
By induction hypothesis, we have that ⟨ε⟩χ distinguishes p′ from Q, but then it also distinguishes
p from Q.

Due to rule (observation) in Definition 5.1: Then χ = ⟨a⟩φ and there are p
a−→ p′ and Q

a−→ Q′

such that φ ∈ Strat([p′, Q′]a, upd(e,−ê1)). By induction hypothesis we have that φ distinguishes
p′ from Q′. Therefore, p ∈ JχK ⊆ J⟨ε⟩χK. If there were some q ∈ Q ∩ J⟨ε⟩χK, then we would
have a path q ↠ q′

a−→ q′′ ∈ JφK. But q′ ∈ Q because Q ↠ Q and therefore q′′ ∈ Q′ ∩ JφK = ∅.
Contradiction! Therefore ⟨ε⟩χ distinguishes p from Q.

Due to rule (late conj) in Definition 5.1: Then χ ∈ Strat((p,Q)d, e). By induction hypothesis,
χ distinguishes p from Q. As in the previous case, we use Q ↠ Q to get that ⟨ε⟩χ distinguishes
p from Q.

Due to rule (stable) in Definition 5.1: Then χ =
∧
{¬⟨τ⟩T} ∪ Ψ ∈ Strat((p, {q ∈ Q | q ̸τ−→})sd, e).

By induction hypothesis, χ distinguishes p from the stable states in Q. Therefore, p ∈ JχK ⊆
J⟨ε⟩χK. unstable states do not satisfy ¬(τ )T, so if there were some unstable q ∈ Q ∩ J⟨ε⟩χK, then
we would have a path q ↠ q′ ̸τ−→ with q′ ∈ JχK. But q′ ∈ Q because Q ↠ Q, so q′ cannot satisfy
χ by induction hypothesis. Contradiction! Therefore ⟨ε⟩χ distinguishes p from all states in Q.

Due to rule (branch) in Definition 5.1: Then χ ∈ Strat((p, α, p′, Q \Qα, Qα)
η
d) (for some p

(α)−−→
p′ and Qα ⊆ Q). By induction hypothesis, χ distinguishes p from Q. As in the previous case, we
use Q↠ Q to get that ⟨ε⟩χ distinguishes p from Q.

3. Assume ψ ∈ Strat([p, q]∧a , e).

Due to rule (pos) in Definition 5.1: Then ψ is of the form ⟨ε⟩χ and χ ∈ Strat([p,Q′]εa, upd(e,
(min{1,6}, 0, 0, 0, 0, 0, 0, 0))) for {q}↠ Q′. By induction hypothesis, ⟨ε⟩χ distinguishes p from Q′,
and because q ∈ Q′, it also distinguishes p from q.

Due to rule (neg) in Definition 5.1: Then ψ is of the form ¬⟨ε⟩χ and χ ∈ Strat([q, P ′]εa, upd(e,
(min{1,7}, 0, 0, 0, 0, 0, 0,−1))) for {p} ↠ P ′. By induction hypothesis, ⟨ε⟩χ distinguishes q from
P ′, and because p ∈ P ′, its negation ψ distinguishes p from q.

4. Assume
∧
Ψ ∈ Strat((p,Q)d, e).

Due to rule (conj) in Definition 5.1: Then Ψ can be written as {ψq | q ∈ Q}, where each ψq ∈
Strat([p, q]∧a , upd(e,−ê3)). By induction hypothesis, ψq distinguishes p from q, so also

∧
Ψ dis-

tinguishes p from q. Because this holds for every q ∈ Q, we have that
∧
Ψ distinguishes p from

Q.
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Figure 9: Screenshot of equiv.io solving Example 6.1.

5. Assume
∧
{¬⟨τ⟩T} ∪Ψ ∈ Strat((p,Q)sd, e) and p is stable.

Due to rule (stable conj) in Definition 5.1: Then Ψ can be written {ψq | q ∈ Q}, where ψq ∈
Strat([p, q]∧a , upd(e,−ê4)). By induction hypothesis, ψq distinguishes p from q. Because this holds
for every q ∈ Q and p is stable, we have that

∧
{¬⟨τ⟩T} ∪Ψ distinguishes p from Q.

Due to rule (stable fin.) in Definition 5.1: Then we must have Q = ∅ and Ψ = ∅. As p is
stable, it satisfies

∧
{¬⟨τ⟩T}, i.e. the formula in Strat((p,Q)sd, e).

6. Assume
∧
{(α)φ′} ∪Ψ ∈ Strat((p, α, p′, Q \Qα, Qα)

η
d, e), p

(α)−−→ p′ and Qα ⊆ Q.

Due to rule (branch conj) in Definition 5.1: Then Ψ can be written as {ψq | q ∈ Q\Qα}, where
ψq ∈ Strat([p, q]∧a , upd(e,−ê2− ê3)). By induction hypothesis, ψq distinguishes p from q. Because
this holds for every q ∈ Q \Qα, we have that

∧
Ψ distinguishes p from Q \Qα.

Moreover, there are moves (p,α,p′,Q \Qα,Qα)
η
d [p′, Q′]ηa [p′, Q′]a where p

(α)−−→ p′, Qα
(α)−−→ Q′,

and φ′ ∈ Strat([p,Q]a, upd(upd(e, (min{1,6}, 0, 0, 0, 0, 0, 0, 0)),−ê1)). By induction hypothesis, φ′

distinguishes p′ from Q′, so (α)φ′ distinguishes p from Qα.

Together we have that
∧
{(α)φ′} ∪Ψ distinguishes p from Q.

6. Deciding All Weak Equivalences at Once, or Individually

The weak spectroscopy energy game enables algorithms to decide all considered behavioral equivalences.
Our open-source prototype implementation can be tried out on https://equiv.io. Moreover, there is an
extension of CAAL (Concurrency Workbench, Aalborg Edition, [22]) with the entailed algorithm on https:

//github.com/equivio/CAAL. Both yield the expected output on van Glabbeek’s finitary examples [6].
In this section, we briefly explicate how to check individual notions of equivalence and how to check all

at once using our game.
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Figure 10: equiv.io showing the spectrum of equivalences (blue) and in-equivalences (red) between the processes mentioned
at the beginning of Section 1 (cf. Example 6.2). Red triangles mark prices and directions of cheapest distinguishing formulas.

6.1. Checking Individual Notions

Our generalized game characterization induces algorithms to individually check notions of equivalence on
states of a transition system. The idea is to derive a (non-quantitative) reachability game, where positions
are tuples of original positions and current energy levels.

Definition 6.1. Given a declining energy game G = (G,Gd, , w), the derived reachability game GR =
(GR, GR

d , R) is played on tuples GR := G× (En∞ ∪{⊥}) with GR
d := Gd×En∞. Lifted moves (g, e) R

(g′, e′) are possible iff e ̸= ⊥ and if there is u such that g u g′ and e′ = upd(e, u), where e′ = ⊥ if upd(e, u)
is undefined. (That is: positions with exhausted energies are stuck attacker positions.)

To check notion N , one explores the game GR△ starting from ([p, {q}]a, eN ) with the corresponding energy
vector eN from Figure 4. Positions where energy components become negative are won by the defender, and
the exploration of the game-graph stops at such positions. If and only if the attacker wins from ([p, {q}]a, eN ),
then p ̸⪯N q.

Depending on the selected energy vector, this will usually lead to a reachability game sized exponentially
with respect to the transition system (due to the energy game sizes we will discuss in detail in the upcoming
Section 7). As rechability games are simpler than energy games, the decision of the game winner itself
can be done in linear time with respect to the game size. A winning attacker strategy can be seen as a
construction of a distinguishing formula along the lines of Definition 5.1. Preferring clever moves speeds up
the algorithm; for instance, if the budget allows arbitrarily many immediate conjunctions, prioritizing such
moves can mitigate the exponential blowup due to nondeterminism in the transition system.

6.2. Checking All Notions at Once

More generally, one can decide all equivalences at once by computing the Pareto front of attacker-winning
budgets Wina([p, {q}]a). Details on how to do this can be found in Bisping [9]. Our implementation uses a
verified variant of the algorithm with some slight improvements, presented in Lemke [20].

The output will inform about the most fitting preorders to relate and distinguish p and q, as in the
following example:

Example 6.1. Let us try our initial Example 2.1 of abstracted processes (Figure 9 and https://equiv.

io/#stable-unstable-abstraction). The browser tool takes about 100 ms (considering a game of 112 po-
sitions) to report that Pe and Pℓ are stable and unstable readiness-equivalent. Pτ

e and Pτ
ℓ on the other hand

are stable-bisimilar. This output immediately tells us that only notions either strictly finer than readiness or
coarser than stable bisimilarity can be congruences for τ -abstraction. In particular, unstable failures, which
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Gazda et al. [12, Corr. 9] report to be a congruence for abstraction, cannot be one because the unstable
failure formula ⟨ε⟩⟨op⟩⟨ε⟩

∧
{¬⟨ε⟩⟨a⟩T} distinguishes Pτ

e from Pτ
ℓ , analogously to φτ of Example 2.2.

Example 6.2. In the introduction, we have cited Bell’s example processes [2]. We can quickly input them
in CCS notation and ask our tool to tell us about the most fitting equivalences (available at https://equiv.
io/#weak-sims). The spectrum output (Figure 10) shows that all equivalences below countrasimilarity and
stable bisimilarity relate the two processes. This aligns with what Bisping and Montanari [19] report.

6.3. “All” Weak Equivalences?

Of course, our treatment only addresses all the notions in the spectrum of Figure 4, not all weak notions
that have ever been conceived. This is in part intentional to limit the bloat of spectrum and game. Let us
still briefly discuss how some additional notions could be covered.

Revivals and Decorated Traces. The notions of stable revivals, failure traces, and ready traces are relevant
to the CSP community [23]. Their modal characterization demands to differentiate between the modal
depth of the deepest positive conjunct and of the other positive conjuncts. For instance, ready traces may
have one arbitrarily deep positive conjunct at each conjunction, but all the others are capped to modal
depth 1, expressing which other actions would be enabled or disabled at this point of a trace. Thus, these
equivalences need an additional dimension for expr-measurements.

Bisping [9] shows how to include this aspect into the expressiveness metric and the game for notions
that have no special treatment of internal behavior. This comes at the cost of making conjunctions more
complicated, but can be transferred to the present game. In fact, the implementation on https://equiv.io

does employ this trick, thereby actually using a 9-dimensional game with richer stable conjunctions.

Divergence and Completed Obervations. Logic and game, as we have presented them, are blind to divergence
and to completed observations. Van Glabbeek [6] uses additional modalities: ∆ for divergence with J∆K :=
{p | p τ−→ω}; 0 for completed observations with J0K := {p | ∀a.p ̸a−→} (and λ := 0 ∨∆).

We have decided against including these in the game. At least on finite-state systems, they may be
understood to be special action observations. In this view, divergence and completion are something to
be modelled (or added through pre-processing) into a system S before turning to our game of equivalence
questions on S ′.

For 0, the transformation from S to S ′ is obvious: Add a p
✓−→ ⊥ to the transition system for each p ∈ P

where p ̸a−→ for every a ∈ Σ \ {τ} (with ✓ and ⊥ fresh). Then J⟨✓⟩TKS
′
= J0KS .

For finite-state systems, divergence can be addressed by an argument from Groote et al. [24]. Add a
state ⊥, an action δ /∈ Σ and transitions p

δ−→ ⊥ to the transition system for each p ∈ P that lives on a
τ -cycle p

τ−→+ p. Then J⟨ε⟩⟨δ⟩TKS
′
= J∆KS . Fokkink et al. [17] define a unary diverges-while operator ∆φ

to characterize divergence-preserving branching bisimilarity; this operator is then naturally expressed as
branching conjunction ⟨ε⟩

∧
{⟨δ⟩T, φ}.

For infinite systems, divergence is more tricky. Just like infinite traces, it depends on the possibility of
characterizing infinite-duration attacks. On the game level, for infinite plays to be winnable by the attacker,
the game must have a Büchi winning condition. Such a richer game model is the route taken by de Frutos
Escrig et al. [13] to characterize various divergence-aware bisimilarities. For our setting aimed at algorithms
on finite-state systems, this would seem overkill.

7. Complexity, and How to Decrease It

Our approach to decide all behavioral equivalences at once takes exponential time and space as the
subset constructions make the spectroscopy game exponential. Because many of the individual equivalence
problems in the linear-time–branching-time spectrum already have exponential complexity on their own,
there cannot be sub-exponential solutions to the spectroscopy problem. Still, we want to try to achieve
some level of applicability.

In this section, we give detailed bounds for the spectroscopy game G△, show how game size can be
decreased substantially, and prove relaxed correctness of a simplified spectroscopy game.
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[p,Q]a [p,Qε]
ε
a

(p,Q)d

(p, {q∈Qε | q ̸
τ−→})sd

(p, α, p′, Qε)
η
d [p, α, p′, q]ηa

[p′, Q′
α]

η
a

[p, q]∧a [q, {p′ | p↠ p′}]εa

[p, {q′ | q ↠ q′}]εa

[p′, Q′]a

(p′, Q′
α)d

Q↠ Qε

0

Q = ∅
0

Q ̸= ∅
−ê5

p
τ−→ . . . 0

p
a−→ p′

Qε
a−→ Q′

−ê1

Q = Qε0

p ̸τ−→
0

p
(α)−−→ p′

Qε ̸= ∅

0

q ∈ Q

−ê3

q ∈ Qε

q ̸τ−→−ê4
∅ = Q =

{q∈Qε | q ̸
τ−→}

−ê4 − ê8
min{1,6}, 0, 0, 0, 0, 0, 0, 0

min{1,7}, 0, 0, 0, 0, 0, 0,−1

q ∈ Qε

−ê2 − ê3

{q} (α)−−→ Q′
α

min{1,6}, 0, 0, 0, 0, 0, 0, 0

0

Q′
α ↠ Q′

−ê1 − ê3
Q′

α ̸= ∅ −ê1 − ê5

Q′
α = ∅ −ê1

Figure 11: Schematic spectroscopy game G▲ with the blue part updated by Definition 7.1.

7.1. Complexity of the Weak Spectroscopy

Our implementation uses Lemke’s [20] verified algorithm to determine Pareto fronts for multi-weighted

energy games. The algorithm takes O(o · |G|2N · (N2+ |G|N−1 ·N)) time and O(|G|N ·N) space for an N -
dimensional declining energy game (G,Gd, , w), where o denotes the out-degree of . For this paper’s
weak N =8-dimensional spectroscopy game, G△, we have |G△| ∈ O(|−→| · 3|P|) and also o△ ∈ O(|−→| · 2|P|),
because of the defender branching positions and their surroundings. This amounts to exponential time
complexity of O(|−→| · 2|P| · (|−→| · 3|P|)16 · (|−→| · 3|P|)7) = O(|−→|24 · 2|P| · 323|P|), and space complexity
O(|−→|8 · 38|P|). Of course, much of the big numbers caused by the dimensionality do not materialize as the
dimensions are partially linked; and the main exponentiality happens only due to nondeterminism.

The exponential out-degree is due to branching conjunction moves. That these would need exponentially
many outgoing moves seems off: These moves are for η- and branching bisimilarity, which are known to
be at the less expensive (sub-cubic [24]) end of equivalence problems in the spectrum. De Frutos Escrig
et al.’s branching bisimulation game [13] is polynomially sized. Thus, a derived reachability game of the
spectroscopy game for branching bisimilarity should too be polynomial in size if we apply clever optimizations
as hinted to at the end of Subsection 6.1. The next subsection will show how to simplify the spectroscopy
game to achieve this reduction of size around branching conjunctions.

7.2. Improving the Complexity

To reduce the out-degree to be linear, let us reformulate the branching conjunction part of the game to
be closer to the operational definitions of η- and branching bisimilarity (Definition 2.4). We can still solve
the main spectroscopy problem, but will lose some resolution about the number of nested conjunctions.

If we read Definition 2.4 directly as a game, it differs from the branching conjunction moves in Defini-
tion 4.6, because the latter require the attacker to name as Qα ex-ante which q′ to challenge directly and
which ones only after the α step, and to have one continuation for the whole Qα group. Let us rephrase this
part to match Definition 2.4:
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branch
[p,Q]εa

u (p, α, p′, Q)ηd e′=upd(e, u) ∈Wina((p, α, p
′, Q)ηd) χ ∈ Strat▲((p, α, p

′, Q)ηd, e
′)

χ ∈ Strat▲([p,Q]εa, e)

branch immediate acct
[p,Q]ηa

u (p,Q)d e′=upd(e, u) ∈Wina((p,Q)d) φ ∈ Strat▲((p,Q)d, e
′)

φ ∈ Strat▲([p,Q]ηa, e)

branch late acct
[p,Q]ηa

u [p,Q′]εa e′=upd(e, u) ∈Wina([p,Q
′]εa) χ ∈ Strat▲([p,Q

′]εa, e
′)

⟨ε⟩χ ∈ Strat▲([p,Q]ηa, e)

branch conj

(p, α, p′, Q)ηd
u [p, α, p′, q]ηa

u′
gq eq=upd(upd(e, u), u′) ∈Wina(gq) ψq ∈ Strat▲(gq, eq)

for each q ∈ Q Qα = {qα ∈ Q | ∃Q′. gqα = [p′, Q′]ηa} φα = merge({ψqα | qα ∈ Qα})∧
({(α)φα} ∪ {ψq | q ∈ Q \Qα}) ∈ Strat▲((p, α, p

′, Q)ηd, e)

where merge(Φ) :=

{
⟨ε⟩

∧
flatten(Φ) if each φ ∈ Φ \ {T} starts with ⟨ε⟩∧

flatten(Φ) otherwise

and flatten(Φ) :=
⋃

φ∈Φ

{
Ψ if φ =

∧
Ψ

{φ} if φ = ⟨ε⟩χ
.

Figure 12: Rules that replace (branch) and (branch conj) for Definition 7.2.

Definition 7.1. The simplified spectroscopy energy game GS▲ extends Definition 4.5 by

• defender branching positions (p, α, p′, Q)ηd ∈ Gd,

• attacker branching clause positions [p, α, p′, q]ηa ∈ Ga,

• attacker branching positions [p,Q]ηa ∈ Ga,

where p, p′ ∈ P, Q ∈ 2P and α ∈ Σ, and seven kinds of moves:

• branching conjunction [p,Q]εa
0,0,0,0,0,0,0,0

(p, α, p′, Q)ηd if p
(α)−−→ p′,Q ̸= ∅

• branching answer (p, α, p′, Q)ηd
0,−1,−1,0,0,0,0,0

[p, α, p′, q]ηa if q ∈ Q,

• branching observation [p, α, p′, q]ηa
min{1,6},0,0,0,0,0,0,0

[p′, Q′]ηa if {q} (α)−−→ Q′,

• branching reset [p, α, p′, q]ηa
0,0,0,0,0,0,0,0

[p, q]∧a ,

• immediate branching accounting [p,Q]ηa
−1,0,0,0,−1,0,0,0

(p,Q)d if Q ̸= ∅,

• immediate branching finishing [p,∅]ηa
−1,0,0,0,0,0,0,0

(p,∅)d,

• late branching accounting [p,Q]ηa
−1,0,−1,0,0,0,0,0

[p,Q′]εa if Q↠ Q′.

Figure 11 gives a schematic representation. (Only the steel-blue part for branching conjunctions has
changed.) Note that the immediate branching accounting/finishing moves lead to defender conjunction
positions, while the late branching accounting move skips it, but still charges for the conjunction by an
additional energy update of −ê3.

The simplified game part encodes nested conjunctions of the form
∧
{(α)

∧
Ψ′, ψ1, . . .} or the cheaper

form
∧
{(α)⟨ε⟩

∧
Ψ′, ψ1, . . .}. The Ψ′ are the formulas from after branching observation moves, while the ψi

come from the resets. More formally:

Definition 7.2 (Formulas with simplified branching conjunction). For stategy formulas Strat▲ on the sim-
plified spectroscopy game, we replace the rules (branch) and (branch conj) of Definition 5.1 by the ones in
Figure 12. We copy the other rules from Figure 8 with a formal replacement of Strat by Strat▲.
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The simplified game makes a huge difference in practice: Using it, the browser tool of Section 6 can
conduct a spectroscopy on examples like Peterson’s mutual exclusion protocol and specification in 200 mil-
liseconds, whereas it runs out of memory if it tries to construct the full unsimplified game.10

Complexitywise, for the simplified game, G▲, we have just |G▲| ∈ O(|−→| · 2|P|) and also o▲ ∈ O(|−→|).
Deciding the whole game still has exponential time complexity of O(|−→| · (|−→| · 2|P|)16 · (|−→| · 2|P|)7) =
O(|−→|24 ·223|P|), and space complexity O(|−→|8 ·28|P|), but these are much lower bounds than in the original
game.

Bisping [9] describes a trick to cap the energy lattice to {0, 1,∞}8. Thereby, the size of possible Pareto
fronts is bounded, and thus decoupled from the game size. This further improves space complexity to
O(|−→| · 2|P|) and overall time complexity to O(|−→| · (|−→| · 2|P|)16) = O(|−→|17 · 216|P|).

7.3. Correctness of the Simplified Spectroscopy Game

As the counting of conjunctions in the simplified game does not fully align with our theorems of Section 5,
we have to relax our correctness claims. Sometimes the inner conjunction

∧
Ψ′ might be unifiable to contain

only one element, such that a cheapest attack formula needs one fewer conjunction level than what the
simplified game predicts. Lemma 5.1 would not hold for this formulation.

This is a rather theoretical problem: Notions that allow branching/η observations do not care about
precise counting of conjunctions; either there are immediate conjunctions or there are none. Therefore, an
implementation not caring about the very-cheapest formulas in the sense of Section 3, and only interested in
notions where (eN )2 > 0 implies (eN )3, (eN )5 ∈ {0,∞}, can employ the simpler formulation of Definition 7.1.

If we simplify the lattice of energies to not count the conjunctions whenever there are branching conjunc-
tions, or round up the number of conjunctions to ∞ whenever it is nonzero, we can prove that the simpler
game leads is equally correct, as follows.

Definition 7.3 (Simplified energies and formula prices). Let En∞▲ be the union of N × {0} × N6 and
N× {∞} × {0,∞}× N× {0,∞}× N3.

We form simplified expressiveness prices by rounding up the prices of Definition 3.3: expr▲(φ) = min{e ∈
En∞▲ | e ≥ expr(φ)} (and similarly exprε▲ and expr∧▲).

The first subset of En∞▲ contains energy values for plays without branching conjunction, and everything
else is counted normally. The second subset contains energy values for plays with branching conjunction; then
we only distinguish whether branching, standard or immediate conjunctions are absent (the corresponding
dimension is 0) or at least one conjunction is present (the corresponding dimension is rounded up to ∞).
Stable conjunctions can still be counted exactly.

Energy updates (Definition 4.1) are not changed; let us only recall that when applying a relative update
−1, we set ∞− 1 =∞ (as in the third dimension in Example 4.1).

The definition of winning budgets (Definition 4.3) does not change either; but let us recall that, as
sometimes finite values for dimensions are missing, the concrete minimum values in En∞▲ for WinG▲

a (g)
contain infinite components more often.

Further definitions of the declining energy game etc. are all analogous to the above. Then we can prove
correctness on simplified game G▲ and energies En∞▲ corresponding to Theorem 5.1:

Theorem 7.1. For all e ∈ En∞▲, p ∈ P, Q ∈ 2P , the following are equivalent:

1. There exists a formula φ ∈ HMLsrbb with price expr▲(φ) ≤ e that distinguishes p from Q.

2. Attacker wins GS▲ from [p,Q]a with e (that is, e ∈WinG
S
▲

a ([p,Q]a)).

The proof of the theorem is given through the following three lemmas.

Lemma 7.1. If φ ∈ HMLsrbb distinguishes p from Q, then expr▲(φ) ∈WinG▲
a ([p,Q]a).

Proof. Similarly to Lemma 5.1, we prove the following inductive property:

10The model can be found on https://equiv.io/#peterson-mutex-silent.
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1. If φ ∈ HMLsrbb distinguishes p from Q ̸= ∅, then expr▲(φ) ∈WinG▲
a ([p,Q]a);

2▲. If χ distinguishes p from Q ̸= ∅ and Q is closed under ↠ (that is Q ↠ Q), then exprε▲(χ) ∈
WinG▲

a ([p,Q]εa);

3. If ψ distinguishes p from q, then expr∧▲(ψ) ∈WinG▲
a ([p, q]∧a ).

4. If
∧
Ψ distinguishes p from Q ̸= ∅, then exprε▲(

∧
Ψ) ∈WinG▲

a ((p,Q)d);

5. If
∧
{¬⟨τ⟩T}∪Ψ distinguishes p from Q ̸= ∅ and the processes in Q are stable, then exprε▲(

∧
{¬⟨τ⟩T}∪

Ψ) ∈WinG▲
a ((p,Q)sd);

6▲. If
∧
{(α)φ′} ∪ Ψ distinguishes p from Q, then, for any p

(α)−−→ p′ ∈ Jφ′K, exprε▲(
∧
{(α)φ′} ∪ Ψ) ∈

WinG▲
a ((p, α, p′, Q)ηd).

We redo just the proofs of the clauses that really change:

2▲. Assume χ distinguishes p from Q ̸= ∅ (and Q↠ Q).

χ = ⟨a⟩φ′, χ =
∧
Ψ, or χ =

∧
{¬⟨τ⟩T} ∪Ψ: Same as in Lemma 5.1.

χ =
∧
{(α)φ′} ∪Ψ: Note that there must exist p

(α)−−→ p′ ∈ Jφ′K (otherwise p ̸∈ J(α)φ′K ⊇ JχK, so χ
would not distinguish p from anything). Pick such a p′. Then there is the move [p,Q]εa

branching conj.

(p, α, p′, Q)ηd; so we can use the proof for (p, α, p′, Q)ηd that follows in (6▲) and Definition 4.3 to
get exprε▲(χ) ∈WinG▲

a ([p,Q]εa).

6▲. Assume
∧
{(α)φ′} ∪Ψ distinguishes p from Q and p

α−→ p′ ∈ Jφ′K.

There are the moves (p, α, p′, Q)ηd
br. answer [p, α, p′, q]ηa for all q ∈ Q. Note that the branching an-

swer move, although it has a nonzero price, does not update an expressiveness in En∞▲, as it only
changes dimensions that are∞ anyway: exprε▲(

∧
{(α)φ′}∪Ψ) = upd(exprε▲(

∧
{(α)φ′}∪Ψ), (0,−1,−1, 0,

0, 0, 0, 0)).

For every such position we have to prove that exprε▲(
∧
{(α)φ′} ∪Ψ) ∈ WinG▲

a ([p, α, p′, q]ηa). We distin-
guish whether q ∈ J(α)φ′K or not.

If q ∈ J(α)φ′K, the attacker continues with [p, α, p′, q]ηa
br. reset [p, q]∧a . As

∧
{(α)φ′} ∪Ψ distinguishes p

from q, it must be the case that one of the conjuncts, say ψq ∈ Ψ, does not hold in q; in other words,

ψq distinguishes p from q. Using induction hypothesis (3), we conclude that expr∧▲(ψ) ∈WinG▲
a ([p, q]∧a )

and because exprε▲(
∧
{(α)φ′} ∪Ψ) is larger, it is also in WinG▲

a ([p, q]∧a ).

If, however, q /∈ J(α)φ′K, the attacker chooses to continue with [p, α, p′, q]ηa
br. observation [p′, Q′]ηa for

{q} (α)−−→ Q′. Using Definition 3.3, we can find that upd(upd(exprε▲(
∧
{(α)φ′} ∪ Ψ), (min{1,6}, 0, 0, 0,

0, 0, 0, 0)),−ê1) ≥ expr▲(φ
′).

We know that φ′ distinguishes p′ from Q′; the attacker just continues depending on which move is the
most advantageous for them. If Q′ = ∅, the best move is [p′,∅]ηa

immediate br. finishing
(p′,∅)d; then one

can finish the proof using expr▲(φ
′) ≥ 0 ∈WinG▲

a ((p′,∅)d).

If φ′ is an immediate conjunction and Q′ ̸= ∅ (then we must have that φ′ ̸= T), the attacker continues
with [p′, Q′]ηa

immediate br. acct. (p′, Q′)d, and the continuation can be handled as in (1). (The additional
update by −ê5 is absorbed because (expr▲(φ

′))5 =∞.)

Otherwise, φ′ = ⟨ε⟩χ′, and the attacker continues with [p′, Q′]ηa
late br. acct. (p′, Q′′)d for Q′ ↠ Q′′.

(There is an additional update by −ê3, but that does not matter, because (exprε▲(
∧
{(α)φ′} ∪Ψ))3 =

∞.)

If χ′ is a standard conjunction, the continuation can be handled as in (2▲) directly. Otherwise, the
continuation can be handled as if χ′ were the standard conjunction

∧
{⟨ε⟩χ′}, using induction hypo-

thesis (3); the added conjunction has no influence on the expressiveness price exprε▲(
∧
{(α)φ′} ∪Ψ) =

exprε▲(
∧
{(α)⟨ε⟩

∧
{φ′}} ∪Ψ), as the third dimension is ∞.
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Lemma 7.2. If e ∈WinG▲
a ([p,Q]a), then there is φ ∈ Strat▲([p,Q]a, e) with expr▲(φ) ≤ e.

Proof. We prove a more detailed result, namely:

1. If e ∈WinG▲
a ([p,Q]a), then there is φ ∈ Strat▲([p,Q]a, e) with price expr▲(φ) ≤ e;

2▲. If e ∈WinG▲
a ([p,Q]εa), then there is χ ∈ Strat▲([p,Q]εa, e) with price exprε▲(χ) ≤ e;

3. If e ∈WinG▲
a ([p, q]∧a ), then there is ψ ∈ Strat▲([p, q]

∧
a , e) with price expr∧▲(ψ) ≤ e.

4. If e ∈WinG▲
a ((p,Q)d), then there is

∧
Ψ ∈ Strat▲((p,Q)d) with price exprε▲(

∧
Ψ) ≤ e;

5. If e ∈WinG▲
a ((p,Q)sd), then there is

∧
{¬⟨τ⟩T}∪Ψ ∈ Strat▲((p,Q)sd) with price exprε▲(

∧
{¬⟨τ⟩T}∪Ψ) ≤

e;

6▲. If e ∈WinG▲
a ((p, α, p′, Q)ηd), then there is

∧
{⟨α⟩φ′} ∪Ψ ∈ Strat▲((p, α, p

′, Q)ηd) with exprε▲(
∧
{(α)φ′} ∪

Ψ) ≤ e.

7▲. If e ∈WinG▲
a ([p,Q]ηa) and e3 =∞, then there is φ ∈ Strat▲([p,Q]ηa) with price expr▲(φ) ≤ upd(e,−ê1).

We induct over game positions g and energies e according to the inductive Definition 4.3. We distinguish
cases depending on the kind of position, and we only repeat the cases that are different from Lemma 5.2.

2▲. Assume e ∈WinG▲
a ([p,Q]εa). This must be due to one of the following moves:

Branch. conjunction move [p,Q]εa
0 (p, α, p′, Q)d: It must hold that e ∈WinG▲

a ((p, α, p′, Q)d). By
induction hypothesis there is a formula

∧
{(α)φ′}∪Ψ ∈ Strat▲((p, α, p

′, Q)d) and exprε▲(
∧
{(α)φ′}∪

Ψ) ≤ e; therefore, by rule (branch) of Definition 7.2,
∧
{(α)φ′} ∪Ψ ∈ Strat▲([p,Q]εa).

Other moves: same as for Lemma 5.2.

6▲. Assume e ∈ WinG▲
a ((p, α, p′, Q)ηd). Then there are moves (p, α, p′, Q)ηd

−ê2−ê3 [p, α, p′, q]ηa for every
q ∈ Q. For every such state, it must be the case that e′ := upd(e,−ê2 − ê3) ∈ WinG▲

a ([p, α, p′, q]ηa).
(Note that this implies that e3 =∞ and therefore e′3 =∞.) We know that this must be due to one of
the following moves:

Branch. observation move [p, α, p′, q]ηa
(min{1,6},0,0,0,0,0,0,0)

[p′, Q′]ηa for {q} (α)−−→ Q′: It must be the
case that e′′ := upd(e′, (min{1,6}, 0, 0, 0, 0, 0, 0, 0)) ∈ WinG▲

a ([p′, Q′]ηa) and e′′3 = ∞. By induction
hypothesis there is some formula φ ∈ Strat▲([p

′, Q′]ηa, e
′′) and expr▲(φ) ≤ upd(e′′,−ê1).

Let Qα be the subset of Q consisting of states where the attacker chooses the branching obser-
vation move, and pick a formula ψqα ∈ Strat▲([p

′, Q′]ηa, e
′′) with expr▲(ψqα) ≤ upd(e′′,−ê1) for

every qα ∈ Qα. Let φα := merge({ψqα | qα ∈ Qα}).

Branch. reset move [p, α, p′, q]ηa
0 [p, q]∧a : It must be the case that e′ ∈WinG▲

a ([p, q]∧a ). By induction
hypothesis there is some formula ψ ∈ Strat▲([p, q]

∧
a , e

′) with expr∧▲(ψ) ≤ e′.

Now we can apply rule (branch conj) in Definition 7.2 and get that
∧
({(α)φα} ∪ {ψq | q ∈ Q \Qα}) ∈

Strat▲((p, α, p
′, Q)ηd, e). When we look through Definition 3.3 of expr, we see that the expressiveness

price of this formula is also ≤ e.

7▲. Assume e ∈WinG▲
a ([p,Q]ηa). This must be due to one of the following moves:

Early branch. accounting [p,Q]ηa
−ê1−ê5 (p,Q)d: We have e′ = upd(e,−ê1− ê5) ∈WinG▲

a ((p,Q)d),
so by induction hypothesis we know that there exists a conjunction

∧
Ψ ∈ Strat▲((p,Q)d, e

′)
and exprε▲(

∧
Ψ) ≤ e′. But then,

∧
Ψ ∈ Strat▲([p,Q]ηa, e) by rule (branch immediate acct) of

Definition 7.2 and expr▲(
∧
Ψ) ≤ e′ + ê5 = upd(e,−ê1).

Early branch. finishing [p,∅]ηa
0 (p,∅)d: Similar to the previous case.
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Late branch. accounting [p,Q]ηa
−ê1−ê3 [p,Q′]εa for Q↠ Q′: It must hold that e′ = upd(e,−ê1 −

ê3) ∈ WinG▲
a ([p,Q′]εa, so by induction hypothesis we know that there exists a formula χ ∈

Strat▲([p,Q
′]εa) and exprε▲(χ) ≤ e′. But then, ⟨ε⟩χ ∈ Strat▲([p,Q]ηa, e) by rule (branch late acct)

of Definition 7.2 and expr▲(⟨ε⟩χ) = e′ = upd(e,−ê1 − ê3) = upd(e,−ê1), using that e3 = ∞ in
the last equality.

Lemma 7.3. If φ ∈ Strat▲([p,Q]a, e), then φ distinguishes p from Q.

Proof. Again, to get an inductive property, we actually prove the following:

1. If φ ∈ Strat▲([p,Q]a, e), then φ distinguishes p from Q;

2▲. If χ ∈ Strat▲([p,Q]εa, e) and Q↠ Q, then ⟨ε⟩χ distinguishes p from Q;

3. If ψ ∈ Strat▲([p, q]
∧
a , e), then ψ distinguishes p from {q}.

4. If
∧
Ψ ∈ Strat▲((p,Q)d, e), then

∧
Ψ distinguishes p from Q;

5. If
∧
{¬⟨τ⟩T} ∪ Ψ ∈ Strat▲((p,Q)sd, e) and p is stable, then the stable conjunction

∧
{¬⟨τ⟩T} ∪ Ψ

distinguishes p from Q;

6▲. If
∧
{(α)φ′} ∪Ψ ∈ Strat▲((p, α, p

′, Q)ηd, e) and p
(α)−−→ p′, then the branching conjunction

∧
{(α)φ′} ∪Ψ

distinguishes p from Q.

7▲. If φ ∈ Strat▲([p,Q]ηa, e), then φ distinguishes p from Q.

We prove the result by induction over the derivation of · · · ∈ Strat▲(g, e) according to Definition 7.2.

2▲. Assume χ ∈ Strat▲([p,Q]εa, e) and Q↠ Q.

Due to rule (branch) in Definition 7.2: Then χ ∈ Strat▲((p, α, p
′, Q)ηd, e) (for some p

(α)−−→ p′).
By induction hypothesis, χ distinguishes p from Q. So p ∈ JχK ⊆ J⟨ε⟩χK. If there were some
q ∈ Q ∩ J⟨ε⟩χK, then we would have a path q ↠ q′ ∈ JχK. But q′ ∈ Q because Q ↠ Q, and this
contradicts that χ distinguishes p from Q. Therefore ⟨ε⟩χ distinguishes p from Q.

Due to other rules: Same as in Lemma 5.3.

6▲. Assume
∧
{(α)φ′} ∪Ψ ∈ Strat▲((p, α, p

′, Q)ηd, e) and p
(α)−−→ p′.

Due to rule (branch conj) in Definition 7.2: Then Ψ can be written as {ψq | q ∈ Q\Qα}, where
ψq ∈ Strat▲([p, q]

∧
a , upd(e,−ê2−ê3)). By induction hypothesis, ψq distinguishes p from q. Because

this holds for every q ∈ Q \Qα, we have that
∧
Ψ distinguishes p from Q \Qα.

Moreover, there are moves (p, α, p′, Q)ηd [p, α, p′, qα]
η
a [p′, Q′

qα ]
η
a for every qα ∈ Qα, for

some set Q′
qα . We have p

(α)−−→ p′ and {q} (α)−−→ Q′
qα , and also ψqα ∈ Strat▲([p

′, Q′
qα ]

η
a, upd(upd(e,

−ê2 − ê3), (min{1,6}, 0, 0, 0, 0, 0, 0, 0))). By induction hypothesis, ψqα distinguishes p′ from Q′
qα .

The formula φα := merge({ψqα | qα ∈ Qα}) therefore distinguishes p′ from every such Q′
qα , and

then (α)φα distinguishes p from Qα.

Together we have that
∧
{(α)φα} ∪Ψ distinguishes p from Q.

7▲. Assume φ ∈ Strat▲([p,Q]ηa, e).

Due to rule (branch immediate acct) in Definition 7.2: Then φ ∈ Strat▲((p,Q)d, upd(e, u)) for
u = −ê1 − ê5 (or u = ê1 if Q = ∅). By induction hypothesis, φ distinguishes p from Q, which is
exactly what needs to be proven.

Due to rule (branch late acct) in Definition 7.2: Then φ = ⟨ε⟩χ and χ ∈ Strat▲([p,Q
′]εa, upd(e,

−ê1−ê3)). Also, Q↠ Q′ and thereforeQ′ ↠ Q′. By induction hypothesis (2▲), ⟨ε⟩χ distinguishes
p from Q′, so ⟨ε⟩χ also distinguishes p from Q ⊆ Q′.
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8. Related Work and Conclusion

This paper provides the first generalized game characterization for the spectrum of “weak” behavioral
equivalences and preorders. To this end, Section 2 has introduced a new modal characterization of branching
bisimilarity that is used to capture the modal logics of the silent-step spectrum in Section 3. With this
perspective, the family of weak equivalence problems becomes just one quantitative problem, expressible as
one energy game in Section 4. As we saw in Section 6, this can be used to conveniently solve research
tasks in concurrency theory, and could be extended to further notions. Thanks to the game simplification
of Section 7, meaningful practical models with considerable internal non-determinism can be handled.

Other generalized game characterizations by Chen and Deng [25] and by us [8, 9] have only addressed
strong equivalences or parts of the spectrum [26, 27]. Fahrenberg et al. [28] treated a quantitative game
interpretation for behavioral distances, as well disregarding silent-step notions. Extending this line of work
to account for silent steps in full is necessary for virtually every application.

In the silent-step spectrum, many things are more complicated. There are several abstractions of bisimi-
larity : branching, η, delay and weak bisimilarity, as well as contrasimilarity, stable bisimilarity and coupled
similarity. We have had to radically depart from their existing games [13, 14, 29] to cover all equivalences.
Depending on whether stabilization is required for negated and conjunct observations, each equivalence
notion has different weak versions. Our game characterization is the first to explicitly consider stability-
respecting notions, thereby unifying stable equivalences [6] and unstable ones [12]. This unification enables
observations about the applicability of (un)stable equivalences as the one in Example 6.1.

The framework of codesigning games and grammars can also easily be extended to cater for more notions,
for instance, divergence-aware ones as hinted to in Section 6, or even to combine strong and weak ones in one
game. The connection to energy games enables us to boost our approach using recent polynomial decision
procedures for multi-weighted games from Lemke [20] and Brihaye and Goeminne’s [21].

We have added to the rich body of work on modal characterizations of branching bisimilarity [30, 6, 17,
31, 16]. Continuing [8, 9], our work participates in a recent trend towards a modal focus for equivalences,
also found in Ford et al. [32] connecting graded modal logics and monads, and in Wißmann et al. [33] as
well as Beohar et al. [34]. Like Martens and Groote [35], we find minimal-depth distinguishing formulas for
branching bisimilarity, but we solve the problem for all weak notions at once.

Our main related work, of course, is van Glabbeek’s linear-time–branching-time spectrum [5, 6]. Up to
today, part II on silent steps is available only in preliminary versions. For our slice of the weak spectrum,
we have filled in some blanks on modal characterizations. Most importantly, we hope our algorithms make
the wisdom on weak equivalences of part II more accessible to tools and humans alike.
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